1) nonlinear dimensionality reduction
非线性维数约减
1.
Locally adaptive nonlinear dimensionality reduction;
基于局域主方向重构的适应性非线性维数约减
2.
Research and Application of Nonlinear Dimensionality Reduction;
非线性维数约减的研究及其应用
3.
Most algorithms of nonlinear dimensionality reduction suffer some flaws in common.
现有的非线性维数约减算法需要求解大尺度特征值问题 由于特征值问题至少二次的计算复杂性 ,这类算法在大样本集上的应用较受限制 此外 ,现有算法的全局优化机制对于噪声较为敏感 ,且需要考虑“病态矩阵”的计算精度问题 提出时间复杂性为O (NlogN)的自组织非线性维数约减算法SIE SIE的主要计算过程是局域的 ,可提高算法抗噪性、回避病态矩阵的计算精度问题 仿真表明 ,对于无噪数据和含噪数据 ,SIE均可获得优化或近似优化的重构质
2) linear dimension reduction
线性维数约减
1.
Application of a non-linear dimension reduction algorithm on document clustering;
非线性维数约减算法在文档聚类中的应用
3) dimension reduction
维数约减
1.
The problem of dimension reduction arises in many fields of information processing,including machine leaning,data compression,pattern recognition.
维数约减问题出现在信息处理的许多方面,非线性方法主要有局部线性嵌入LLE(LocallyLinear Embedding)、拉普拉斯特征映射(Laplacian E igenmap)、基于Hessian矩阵的LLE等,它们通过在高维空间中设计数据集所在流形的拓扑、几何等特性,很好地弥补了线性降维不能发现数据集非线性结构的不足。
4) dimensionality reduction
维数约减
1.
So,a local and global preserving based semi-supervised dimensionality reduction (LGSSDR) method is proposed in this paper.
在很多机器学习和数据挖掘任务中,仅仅利用边信息(side-information)并不能得到最好的半监督学习(semi-supervised learning)效果,因此,提出一种基于局部与全局保持的半监督维数约减(local and global preserving based semi-supervised dimensionality reduction,简称LGSSDR)方法。
2.
Nonlinear dimensionality reduction is a challenging problem encountered in a variety of high dimensional data analysis,including machine learning,pattern recognition,scientific visualization,and neural computation.
最大方差展开(maximum variance unfolding,MVU)是在流形局部等距概念基础上提出的一种新的非线性维数约减算法,能有效学习出隐含在高维数据集中的低维流形结构。
5) non-linear attenuation coefficient
非线性衰减系数
6) nonlinear numerical constraints
非线性数值约束
1.
A new method is presented in this paper to solve Boolean combinations of nonlinear numerical constraints completely.
针对这种问题,提出了将非线性数值约束转化为特殊形式的优化问题,采用全局优化算法对其进行求解的方法。
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条