1) Gauss-Laguerre integral formula
Gauss-Laguerre积分算法
2) gauss quadrature methods
Gauss积分法
3) Gauss-Laguerre-Radau quadrature formula
广义Gauss-Laguerre-Radau求积公式
1.
Generalized Gauss-Laguerre-Radau quadrature formulas;
广义Gauss-Laguerre-Radau求积公式
4) Laguerre-Gauss collocation method
广义Laguerre-Gauss配置方法
5) Gauss's integrating method
Gauss求积法
6) Gauss-Lobatto integration
Gauss-Lobatto积分
补充资料:比例积分微分作用控制算法
分子式:
CAS号:
性质:控制装置输出信号的变动量包括(1)与偏差成比例的比例作用(P)项,(2)与偏差对时间的积分值成比例的积分作用(1)项和(3)与偏差驿时间的变化率成比例的微分作用(D)项三者相加而成的控制作用数学表示法。设令u代表控制器输出,u0代表在初始时刻t0而且偏差为零情况下的控制器输出,e代表偏差值,即控制器输入,则式中t为时间,Kc称比例增益,Ti称再调时间,Td称预调时间。比例积分微分作用综合了三种控制作用的优点,与单纯的比例作用(P)相比,比例积分微分作用(PID)兼有能消除余差和在被控变量发生变动的萌芽阶段即能及时动作的优点,但在被控变量存在高频的微小波动(噪声)时不宜采用。主要用于温度和成分控制回路。
CAS号:
性质:控制装置输出信号的变动量包括(1)与偏差成比例的比例作用(P)项,(2)与偏差对时间的积分值成比例的积分作用(1)项和(3)与偏差驿时间的变化率成比例的微分作用(D)项三者相加而成的控制作用数学表示法。设令u代表控制器输出,u0代表在初始时刻t0而且偏差为零情况下的控制器输出,e代表偏差值,即控制器输入,则式中t为时间,Kc称比例增益,Ti称再调时间,Td称预调时间。比例积分微分作用综合了三种控制作用的优点,与单纯的比例作用(P)相比,比例积分微分作用(PID)兼有能消除余差和在被控变量发生变动的萌芽阶段即能及时动作的优点,但在被控变量存在高频的微小波动(噪声)时不宜采用。主要用于温度和成分控制回路。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条