说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 自适应高斯核平滑滤波器
1)  Guassian kernel adaptive smooth filter
自适应高斯核平滑滤波器
1.
Firstly, the two different frames are manipulated using Guassian kernel adaptive smooth filter, in order to suppress the random noise on the images.
首先,对两帧图像通过自适应高斯核平滑滤波器处理,以降低图像的随机噪声对处理结果的影响;然后,根据两帧图像对应像素的灰度变化量信息,判断该两帧图像的光强变化程度;最后,根据本文所研究的抑制光线强度变化影响的方法,将运动目标从背景中检测出来。
2)  Gaussian kernel smooth filter
高斯核平滑滤波器
1.
Firstly, images are preprocessed by Gaussian kernel smooth filter in order to suppress the random noise on the images and smooth the images; Secondly, due to the invariability of rgb color model, we convert RGB model.
改进的方法运用自适应高斯核平滑滤波器,对所拍摄的图像序列进行平滑滤波处理,以平滑图像和降低随机噪声对图像处理的干扰。
3)  Adaptive Noise Smooth(ANS) filter
自适应噪声平滑滤波器
4)  adaptive Gaussian frequency filter
自适应高斯频域滤波器
5)  Adaptive smooth filter
自适应平滑滤波
1.
The paper proposes a new method of adaptive smooth filter,based on that to design a Gaussian kernel adaptive smooth filter so as to suppress the random noise spread on the infrared image.
文章提出了一种新的自适应平滑滤波方法,并据此设计自适应高斯核平滑滤波来抑制红外图像中的随机噪声。
6)  adaptive Gaussian filter
自适应高斯滤波
1.
On the basis of it,an adaptive Gaussian filter with scale adjustable was adopted in filtering.
在其基础上,采用尺度可变的自适应高斯滤波器进行滤波,通过计算滤波器各滤波窗口内像素点灰度值的均值,以及该均值与当前像素点灰度值的差值,确定滤波窗口的平滑度,并将其作为高斯函数尺度的大小,在滤除噪声的同时确保了边缘信号不被平滑掉;同时采用基于简单统计法及梯度阈值法的双阈值分割方法检测经过非极大值抑制的梯度幅值图像的边缘。
补充资料:自适应滤波器
      以输入和输出信号的统计特性的估计为依据,采取特定算法自动地调整滤波器系数,使其达到最佳滤波特性的一种算法或装置。自适应滤波器可以是连续域的或是离散域的。离散域自适应滤波器由一组抽头延迟线、可变加权系数和自动调整系数的机构组成。附图表示一个离散域自适应滤波器用于模拟未知离散系统的信号流图。自适应滤波器对输入信号序列x(n)的每一个样值,按特定的算法,更新、调整加权系数,使输出信号序列y(n)与期望输出信号序列d(n)相比较的均方误差为最小,即输出信号序列y(n)逼近期望信号序列d(n)。
  
  
  20世纪40年代初期,N.维纳首先应用最小均方准则设计最佳线性滤波器,用来消除噪声、预测或平滑平稳随机信号。60年代初期,R.E.卡尔曼等发展并导出处理非平稳随机信号的最佳时变线性滤波设计理论。维纳、卡尔曼-波色滤波器都是以预知信号和噪声的统计特征为基础,具有固定的滤波器系数。因此,仅当实际输入信号的统计特征与设计滤波器所依据的先验信息一致时,这类滤波器才是最佳的。否则,这类滤波器不能提供最佳性能。70年代中期,B.维德罗等人提出自适应滤波器及其算法,发展了最佳滤波设计理论。
  
  以最小均方误差为准则设计的自适应滤波器的系数可以由维纳-霍甫夫方程解得
  
    (1)式中W(n)为离散域自适应滤波器的系数列矩阵(n)为输入信号序列x(n)的自相关矩阵的逆矩阵,Φdx(n)为期望输出信号序列与输入信号序列x(n)的互相关列矩阵。
  
  B.维德罗提出的一种方法,能实时求解自适应滤波器系数,其结果接近维纳-霍甫夫方程近似解。这种算法称为最小均方算法或简称 LMS法。这一算法利用最陡下降法,由均方误差的梯度估计从现时刻滤波器系数向量迭代计算下一个时刻的系数向量
  
    (2)式中憕[ε2(n)]为均方误差梯度估计,
  
  
  (3)ks为一负数,它的取值决定算法的收敛性。要求,其中λ为输入信号序列x(n)的自相关矩阵最大特征值。
  
  自适应 LMS算法的均方误差超过维纳最佳滤波的最小均方误差,超过量称超均方误差。通常用超均方误差与最小均方误差的比值(即失调)评价自适应滤波性能。
  
  抽头延迟线的非递归型自适应滤波器算法的收敛速度,取决于输入信号自相关矩阵特征值的离散程度。当特征值离散较大时,自适应过程收敛速度较慢。格型结构的自适应算法得到广泛的注意和实际应用。与非递归型结构自适应算法相比,它具有收敛速度较快等优点。人们还研究将自适应算法推广到递归型结构;但由于递归型结构自适应算法的非线性,自适应过程收敛性质的严格分析尚待探讨,实际应用尚受到一定限制。
  
  自适应滤波器应用于通信领域的自动均衡、回波消除、天线阵波束形成,以及其他有关领域信号处理的参数识别、噪声消除、谱估计等方面。对于不同的应用,只是所加输入信号和期望信号不同,基本原理则是相同的。
  
  

参考书目
   R.A.Monzingo, T.W.Miller, Introduction to Adaptive Arrays, John Wiley and Sons,New York,1980.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条