1) Method dependency
方法依赖
1.
In this paper,the define of Class Dependency is firstly introduced,and fractionated into data dependency and method dependency,then this paper provides strict and describes the two methods:depending metrics and depended metrics?Finally,two methods are introduced to affirm class size based on them.
该文首先对类之间的依赖关系进行了定义和说明,并细分其为数据依赖和方法依赖,在此基础上,提出依赖度和被依赖度两种度量方法,并进行了严格的语义分析和说明。
2) the dependability method
依赖度法
3) Syntactic Dependencies
句法依赖
4) LID detect methods
局部依赖检验方法
5) directional dependence
方向依赖性
6) Schedule-dependent therapy
方案依赖性
补充资料:极小化方法(强依赖于多个变量的函数的)
极小化方法(强依赖于多个变量的函数的)
lion methods for functions depending strongly on a few variables
则数r称为函数J(x)在x‘G的谷维数(di~ionof the valley)(见[l」). 描述J(x)的下降轨道的微分方程组 d义 嚣一J’(x),‘(0)一‘。,(3)是一个刚性微分方程组(s叮山晚肥爪阁s势记m). 特别地,当J(x)是严格凸的且其He资℃矩阵是正定的(它的本征值是严格正的)时候,不等式(l)与熟知的场翔e矩阵的病态要求: n笼以」(x、 人{J‘IX))=—二戈>l rnln又八x)一致.在这情况下谱条件数与山谷的陡度相同. 坐标方式的下降法(coo攻垃扭te一~d留eent ITrth-ed)(见[ZJ)J(x:,*+:,“‘,x‘一,.*十,,x.,*+,,x‘+1.*,…,x。.*)一塑J(x,,*+:,‘”,x卜1,*,y,x‘+:,*,“’,xo.*), k=0,1,…,(4)不管其简单性和普遍性,仅当山谷的位置处于罕见情况下,即当山谷的方向是沿着坐标轴时才有效. 「2】中提出了方法(4)的一个现代化版本,它包括坐标轴的一个旋转,使得一个轴沿x*一x七一伸展,此后搜索在第(k+l)步开始.这样的一个办法导致一个坐标轴有一种与谷底的一条母线一致的趋向,使在若干情况下能顺利实现带有一维山谷的函数的极小化.这方法对多维山谷是不适用的. 最速下降法(s慨pest des以泊t,m出加吐of)的方案是由差分方程 x*十一x*一h*J{,J诬=J‘(x*)(5)给出的,这里h*由条件 J(‘*、:)一嘿J(‘厂hJ口选取.对严格凸的谷函数,特别对二次函数 J(x)一合X·DX一。·x,(6)由算法(5)构造的序列{x*}几何地收敛于函数的极小值点x’(见「3』): 1 Ix*一x‘11簇eg‘,这里C=常数且 。一典4共手共咎井. k(J"(x’))+l’由于对谷函数,k(J“(x))》1,q“1,从而收敛性在实际上是不存在的. 对简单梯度方案(见阱】);梯度法(脚曲ntme-thod)) x*十,=x*一hJ二,J*十1“J(x*、,),h=常数, (7)类似的情况也能看到.加速其收敛性的基础在于用以前迭代的结果使得谷底更精确.梯度法(7)能够同每一次迭代的比率q=}人}/{J*一」}的计算一起应用(见阱],【51).当它变得稳固地接近于常数值q=1时,按照表达式 h x二,=x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条