说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 快速算术码
1)  fast arithmetic coding
快速算术码
2)  fast adaptive arithmetic code
快速自适应算术编码
1.
The algorithm compresses digital ink multi-dimension data losslessly using three approaches: integer wavelet packet transform, hierarchical set partitioned, significant bits combination code and fast adaptive arithmetic code.
该算法通过引入整数小波包变换、层次性集合分裂、重要位组合编码和快速自适应算术编码等方法,无损地压缩了数字笔迹多维数据。
3)  fast coding algorithm
快速编码算法
4)  fast block coding algorithm
快速块编码算法
5)  fast decoding algorithm
快速译码算法
6)  Fast Arithmetic Transform
快速算术变换
补充资料:算术误差校正码


算术误差校正码
ode with correction of arithmetical errors

算术误差校正码【“日e衍伍。叻℃功.of幼thmeU目e~;哪c.口,即阴翻ap呻毗俐~姗.触],算术码(arithmetie“xle) 一种用于控制加法器运算差错的码.当加数为二进数表刁‘时,加法器运算中一个羊一的差错通常将导致运算结果改变2的某次幂.因此,个‘单一的)在整数环Z中的算术误差(盯lthmetic err盯)被定义为个数刀到‘个数N七丙一2’(,二0,1、)的变换.2火Z l的函数户(N,N夕被定义为N,到NZ的算术误差的最小个数,它是个距离度量任一有限子集(一个码)KCZ由它的最小距离(mini叮lumd一stan①) 召入)几mln浏入}.入力来刻画,其中最小值是对所有不同的N、,从6K取的.少于或等于才个算术误差的集合可将一个数N变为一个以N为中心t为仁径的度量球.这样,如果以一个码的任意两个数为中公、以t为半径的度量球互不相交(即码的最小即离大干沂卜则称这个码能悖平亡个纂水谬差.如果以个码的任意数为中往_户、以、为半径的度量球不包含码的其他数(即码的最小距离大于s),则称这个码能检测s个算术误差.跄离度量P可有另一种描述; 川人丫:)州刀;N:),其中w(N)是数入钓{算术)权‘weght)、也就是,在N的表示式 、·乞、ZN·0.:‘;k一o·‘、4(。 J戒J中的最小的非零系数的个数.对犷每个N,(*)的表小式在N、关ON付,二0(i二1,,人一l)时是唯一的,111卜零系数的个数为w(N).例如,23二2峪+2卫十2,+2。二25一丁一}日_*(23片3.因为尸(N。十N,NZ十N)二户(N、.从)对于{补何N,,NZ,N任z成立,我们可限制这个码不含负数.人的码的长度(1。ngth ofa〔xxle)用{I(>g:B(k)]+l来夜刁;,其中尽K)为码K中的最大数.对于一个长度为。的码的任意一个数B有唯一的字lj(B)=方,一,·断方,取值尹产封表{0‘川且使B=公_抽·2‘.如果码KCz能纠正;个算术误差,那么码{/J(B):B〔人}口丁全中上t个误差(置换型的误差),这是由1一d(/j(Bl).万(尽)))尸tBI.B)成立,其中d(二)是Hamming即离(见纠错码‘err()r一correCting以le))在加法器控制问题的研究中,气们常常研究编码广{0,…,M一l,z(见编码与译码恤司Ing andde以xlmg))使j(‘一曰)二八i)十厂叮)对于;+.厂2)具有更多的特征(一个叮进算术误差是一个从数N到数N一N士aq‘的变换其中a二l“‘,守一l;i二0,{,二飞,随着计算技术的发展对这种码的兴趣在增加.与纠错码不同的是在叼二2’(l>1)时它没有纠正单个仔进算术误差的完满AM码;对于守二6存在这样的码的例子,完满AM码的存在条件由数沦特征来刻画,并且与数域中的互反律的研究相联系
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条