1) unsupervised LVQ
无监督学习矢量量化
1.
This paper presents a generalized formulation of unsupervised LVQ,and transfers classical unsupervised LVQ algorithm into learning vector quantization which is based on typically scaling function,its formulation is very convenient for its extension and its application.
无监督学习矢量量化(LVQ)是一类基于最小化风险函数的聚类方法,文中通过对无监督LVQ风险函数的研究,提出了无监督LVQ算法的广义形式,在此基础上将当前典型的LVQ算法表示为基于不同尺度函数的LVQ算法,极大地方便了学习矢量量化神经网络的推广与应用。
2) learning vector quantization
学习矢量量化
1.
Remote sensing image classification based on hybrid learning vector quantization algorithm;
基于混合学习矢量量化算法的遥感影像分类
2.
Objective: To investigate the potential of learning vector quantization (LVQ )artificial neural network tools for discrimination and forecasting of occurrent intensity of typhoid and paratyphoid.
目的: 探讨学习矢量量化(LVQ)人工神经网络在伤寒、副伤寒发生强度判别与预测中的应用。
3.
The energies in different frequency bands selected as robust feature vectors, four types of forearm movement are identified through learning vector quantization neural network.
分析了特征提取方法并采用小波包变换各频段能量构造特征矢量,经过学习矢量量化神经网络训练能够有效地从伸肌和屈肌采集的两道肌电信号中识别伸拳,展拳,腕内旋,腕外旋4种运动模式,平均识别率为94。
3) LVQ
学习矢量量化
1.
The paper is to identify EEG signals of different mental tasks with sixth-order autoregressive,AR(6)coeffi-cients derived from raw,unfiltered EEG signals and LVQ network as classifier.
为了识别在不同思维状态下的自发脑电(EEG)信号 ,本文用6阶自回归(AR)模型表示EEG信号 ,用学习矢量量化(LVQ)神经网络作分类器 ,分别用LVQ1和LVQ2。
2.
LVQ(Learning Vector Quantization)neural network is adopted in gate network and network output is obtained by the nearest rule in space.
算法采用快速近邻法的思想,将样本集分级分解为不同子集,依靠测试样本集的误差估计,获得每个专家网络的网络结构;门网采用学习矢量量化神经网络,根据空间距离最近的原则,得到系统输出。
6) unsupervised learning
无监督学习
1.
Intelligent fire detection based on unsupervised learning clustering algorithm of Dignet
基于Dignet无监督学习聚类算法的智能火灾探测
2.
The learning of connectionism,which consists mainly of supervised learning,intensive learning and unsupervised learning,is modelled after the learning of human beings.
其学习是对人类学习的模拟,主要有监督学习、强化学习和无监督学习三种。
3.
The result of the feature selection in unsupervised learning is not as satisfactory as that in supervised learning.
无监督学习环境下的特征选择往往无法取得像有监督学习环境下那样令人满意的效果。
补充资料:有监督学习
分子式:
CAS号:
性质:用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。
CAS号:
性质:用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条