1) threshold algorithm
门限算法
1.
The article uses threshold algorithm and puts forward a distributed digital signed scheme based on P2P network, group publish key and detached encrption key are disigned by P2P trusted peers.
该文利用门限算法设计了一个基于P2P网络的分布式签名系统,在本方案中,群公钥和分密钥是由P2P网络中的可信任节点共同决定的,保证了安全性。
2) Threshold Cryptography
门限算法
1.
In this paper,a digital signature scheme based on ellipse curve and threshold cryptography is introduced.
介绍了一种基于椭圆曲线和门限算法的数字签名算法,并提出了一个基于分布式PKI的移动Ad Hoc网络安全体系结构。
3) double-threshold algorithm
双门限算法
4) Differential threshold algorithm
微分门限算法
6) threshold accepting algorithm
门限接受算法
1.
In this paper,a new method based on threshold accepting algorithm to solve the least orthogonal deviation estimates of regression coefficient is proposed by changing the problem to the combinatorial optimization based on it′s properties.
把正交最小一乘参数估计问题转化为组合优化问题,再使用门限接受算法求解,通过计算机仿真说明了本文算法的正确性和有效性。
补充资料:门限译码
按检验方程中发生错误的个数是否超过一半(门限)来判决该位是否有错的一种译码方法。它可用于译某些分组码,也可用于译某些卷积码,但效率一般较低。门限译码是从最大后验概率译码法演变来的,但这种算法依赖码的代数构造,译每个码元的计算量是固定的。用Pr(ei=z/r)表示接收到r的条件下,叠加在第i个码元上的差错分量ei等于z(z=0或1)的后验概率,若
Pr(ei=0/r)>Pr(ei=1/r)
(1)
就判ei=0,否则判ei=1,这是最大后验概率译码。后验概率不易计算,通过运算可将式(1)写成条件
f(p,,ei)>T
(2)
式中p为信道误码率;T为门限值。当满足式(2)时,就判ei为1,否则就判ei=0。这种译码称为门限译码。一般的门限译码提取信息比较有效,但实现较复杂。择多逻辑译码是应用最广泛的形式。若对每个ei能构造出一组由下式表述的校验关系:
(3)式中对任一k厵i和所有j,a中至少有一个可取值为1,则在方程组(3)中,ei在每一方程中都出现一次,而其他的ek(k厵i)至多只能在式(3)中的某个方程中出现一次。称式(3)为对码元 ei的正交一致校验和式。若码组中错误个数不超过[J/2],则按下述判决规则就能保证正确译码:
(4)[J/2]表示小于J/2的最大整数。这种译码即称为择多逻辑译码。在分组码条件下还可将上述一步判决推广到L步判决,L为整数,称作L步择多逻辑译码。适用于这种译码的分组码有里德·莫勒码、差集循环码、欧氏几何码和射影几何码等。适用于这种译码的卷积码有自正交码、等距码和用试凑法构造的大量的可正交码。这些码都有广泛的实用价值。
(1)
就判ei=0,否则判ei=1,这是最大后验概率译码。后验概率不易计算,通过运算可将式(1)写成条件
(2)
式中p为信道误码率;T为门限值。当满足式(2)时,就判ei为1,否则就判ei=0。这种译码称为门限译码。一般的门限译码提取信息比较有效,但实现较复杂。择多逻辑译码是应用最广泛的形式。若对每个ei能构造出一组由下式表述的校验关系:
(3)式中对任一k厵i和所有j,a中至少有一个可取值为1,则在方程组(3)中,ei在每一方程中都出现一次,而其他的ek(k厵i)至多只能在式(3)中的某个方程中出现一次。称式(3)为对码元 ei的正交一致校验和式。若码组中错误个数不超过[J/2],则按下述判决规则就能保证正确译码:
(4)[J/2]表示小于J/2的最大整数。这种译码即称为择多逻辑译码。在分组码条件下还可将上述一步判决推广到L步判决,L为整数,称作L步择多逻辑译码。适用于这种译码的分组码有里德·莫勒码、差集循环码、欧氏几何码和射影几何码等。适用于这种译码的卷积码有自正交码、等距码和用试凑法构造的大量的可正交码。这些码都有广泛的实用价值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条