1) likelihood ratio test
似然比检测
1.
According to the model,a generalized likelihood ratio test rule was developed for the target identification,and then the analytical expression to calculate the target identification performance was theoretically given.
为了实现发射周期内目标的实时识别,首先建立了E脉冲激励下目标回波的二元假设检验模型,在此基础上导出了识别目标的广义似然比检测量,并从理论上给出了计算目标识别概率的解析表达式。
2.
First pretreat image through high pass or morphologic filtering, then progress likelihood ratio test to segment possible targets from the image.
首先通过高通或形态学滤波进行图像预处理 ,进一步用似然比检测分割出候选目标 ,考虑到环境干扰造成的目标在某一帧暂时消失的情况 ,提出了利用目标运动特征通过选择合适的邻域判决条件并结合图像流分析提取运动弱小目标的一种方法。
3.
A quasi-hybrid likelihood ratio test (qHLRT) classifier is proposed for linear modulation classification,with unknown carrier frequency offsets (CFO).
针对存在未知载波频偏(CFO)的线性调制分类,提出一种混合似似然比检测(qHLRT)分类器。
2) detection likelihood ratio
检测似然比
1.
Based on the characteristics of the detection likelihood ratio sequence and the recursive relations,a fast algorithm is proposed.
文中根据检测似然比序列的特点,利用递推关系,提出了一种快速算法。
3) GLRT
广义似然比检测
1.
Based on the temporal difference models for background noise pixel,target pixel and clutter pixel,we formulate the detection problem in 2 steps,correlation detection and generalized likelihood ratio test(GLRT).
在图像序列中背景像素、目标像素以及杂波像素的时域差分模型基础上提出了红外小目标时域检测算法,算法共分为两步:相关检测和广义似然比检测。
2.
Then based on the temporal difference models, we formulate the detection problem in 2 steps, correlation detection and generalized likelihood ratio test (GLRT).
然后基于时域差分模型提出了红外慢速小目标时域检测算法,算法共分为两步:相关检测和广义似然比检测。
4) maximum likelihood ratio detection(MLD)
极大似然比检测
1.
A sub-carrier allocation algorithm based on maximum likelihood ratio detection(MLD) in cognitive OFDM is introduced and studied.
研究了认知OFDM中基于极大似然比检测(MLD)的子载波分配算法,认知用户采用MLD模型对主用户频谱使用情况进行分布式检测,利用频谱检测信息动态分配子载波,通过认知基站对认知用户子载波频谱感知信息进行融合判决。
5) likelihood ratio test
似然比检验
1.
Comparative research of goodness of fit between SV and GARCH models by likelihood ratio test;
SV和GARCH模型拟合优度比较的似然比检验
2.
Residual likelihood ratio test for fault diagnosis based on cost reference particle filter
基于CRPF的残差似然比检验故障诊断算法
3.
The present paper presents a testing method for a trend in a variety of mortality rate with the increase of dose level in the carcinogen assessment experiments, the MLE of relative parameters and the asympotic distribution of likelihood ratio test statistic.
本文给出分组评估实验中的 time-adjusted趋势检验和相关参数的极大似然估计 ,同时给出似然比检验统计量的渐近分
6) likelihood ratio tests
似然比检验
1.
Based on the Bayesian phylogenetic tree of cytochrome b gene complete sequences, the evolutionary pattern and process of two character pairs in Gallopheasants are comparatively studied by means of likelihood ratio tests.
基于细胞色素b基因全序列的贝叶斯系统树 ,应用似然比检验方法比较研究了Gallopheasants类群的 2个性状对的进化格局和过程 。
2.
Both likelihood ratio tests and Bayesian inference are employed to study the phylogeny of Phasianidae.
应用似然比检验和贝叶斯推论进行雉科分子系统学研究 。
补充资料:似然比检验
分子式:
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条