1) bilinear grid search
双线性网格搜索法
1.
In order to get the parameter of SVM with RBF kernel,this paper presents a bilinear grid search method,which combines grid search and bilinear search.
通过结合双线性搜索法和网格搜索法,提出了一种双线性网格搜索法。
2) Bilinear Grid Search Method(BGSM)
双线性网格搜索法(BGSM)
3) Grid Search
网格搜索法
1.
The system uses an easy and efficient method named Grid Search to find out the minimum cost of an detached foundation.
本论文研究开发的输电铁塔独立基础优化设计CAD系统,以最小费用为目标,采用简单、有效、易于编程的有约束非线性规划方法——网格搜索法,对输电铁塔独立基础进行优化设计,确定出基础埋深、基柱宽度、底板宽度、底板厚度等合理截面尺寸,并开发出计算、出图一体化的优化设计计算机辅助设计系统。
4) line search method
线性搜索法
1.
A new method to correct the barral distortion of endoscope image based on the line search method of guaranteed global convergence is presented.
根据内窥镜成像特性以及基于全局收敛的线性搜索法来确定畸变图像中心和多项式系数。
5) grided search algorithm of GT
网格GT搜索算法
6) mesh search algorithm
网格搜索算法
1.
Evaluation of roundness error based on mesh search algorithm;
圆度误差的网格搜索算法
补充资料:数论网格求积分法
高维数值积分数论方法研究开始于20世纪50年代末,其理论基础是数论中的一致分布论。命Us表示 s维单位立方体。假定是Us上定义的函数,并假定存在且其绝对值以C为界。命 是Us中具有偏差D(n)的点集。所谓数论方法就是用被积函数在p(k) (1≤k≤n)上值的算术平均作为Us上定积分的近似值,而误差由下面的公式给出:
J(??,p(k))就是由点集p(k)(1≤k≤n)定义的一个求积公式。因此寻求Us上最佳求积公式的问题即等价于寻求Us上最佳偏差的点集的问题。从计算方法的观点看,不仅要求点集p(k)(1≤k≤n)的偏差小,而且要求p(k)的形式简单,易于计算。
① 科罗博夫-劳卡方法 命p表示素数,a=(α1,α2,...,αs)表示整数向量,科罗博夫和E.劳卡证明了,对于任意p,皆存在a,使点集有偏差。也就是说用点集Q(k)(1≤k≤p)构造的求积公式有误差。对于p求出a的计算量为O(p2)次初等运算。因此当p较大时,算出a来很困难。
② 分圆域方法 分圆域是一个次代数数域。利用 的独立单位组可得它的一个适合于
的单位列nl(l=1,2,...),其中表示nl的共轭数。如果使则得点集
用这一点集构造的求积公式的误差为
式中ε为任意正数。算出nl、hjl(1≤j≤s-1)的计算量为O(lognl)。因此算出nl和没有困难,但缺点是误差略为偏大些。
当2≤s≤18时,上述的p、a、nl和h都已汇编成表,可供查阅。
数论方法得到的求积公式的误差主阶均与维数无关,所以当s较大时,用数论方法近似计算Us上的定积分比较合算。
参考书目
华罗庚、王元著:《数论在近似分析中的应用》,科学出版社,北京,1978。
J(??,p(k))就是由点集p(k)(1≤k≤n)定义的一个求积公式。因此寻求Us上最佳求积公式的问题即等价于寻求Us上最佳偏差的点集的问题。从计算方法的观点看,不仅要求点集p(k)(1≤k≤n)的偏差小,而且要求p(k)的形式简单,易于计算。
① 科罗博夫-劳卡方法 命p表示素数,a=(α1,α2,...,αs)表示整数向量,科罗博夫和E.劳卡证明了,对于任意p,皆存在a,使点集有偏差。也就是说用点集Q(k)(1≤k≤p)构造的求积公式有误差。对于p求出a的计算量为O(p2)次初等运算。因此当p较大时,算出a来很困难。
② 分圆域方法 分圆域是一个次代数数域。利用 的独立单位组可得它的一个适合于
的单位列nl(l=1,2,...),其中表示nl的共轭数。如果使则得点集
用这一点集构造的求积公式的误差为
式中ε为任意正数。算出nl、hjl(1≤j≤s-1)的计算量为O(lognl)。因此算出nl和没有困难,但缺点是误差略为偏大些。
当2≤s≤18时,上述的p、a、nl和h都已汇编成表,可供查阅。
数论方法得到的求积公式的误差主阶均与维数无关,所以当s较大时,用数论方法近似计算Us上的定积分比较合算。
参考书目
华罗庚、王元著:《数论在近似分析中的应用》,科学出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条