1) large module power multiplication
大数模幂运算
1.
Large module multiplication is the kernel of large module power multiplication in RSA.
在RSA算法中,大数模幂运算的核心是大数模乘运算。
2) large number modular power multiplication operation
大数模幂乘运算
3) exponential modular computation
指数模幂运算
1.
The bottleneck problems of RSA efficiency are big prime number finding and exponential modular computation.
RSA是公钥密码体系中十分重要的加解密算法,RSA的效率瓶颈主要在大素数的寻找和指数模幂运算上。
4) Modular exponentiation
模幂运算
1.
NSP algorithm for modular exponentiation;
模幂运算的并行算法NSP
2.
In this paper,a new modular exponentiation algorithm named window NAF algorithm is proposed.
将椭圆曲线的定点标量乘的窗口NAF方法应用在模幂运算中,通过采用预处理技术,与SMM算法进行组合得到一种新的求模幂乘算法-窗口NAF方法。
5) modular exponentiations
模幂运算
1.
This thesis firstly introduces the basic theory of timing attack and the discription of the related algorithms, and then taking the modular exponentiations for example, emulates the attack process, finally analysises the advantages, several prob- lems waiting for further study and the trend of timing attack.
本文从定时攻击的概念及原理出发,继而以模幂运算作为加密算法为例,模拟了对该计算进行破解的过程,最后分析了定时攻击的优点、存在的问题以及发展趋势。
6) modular multiplication
模幂运算
1.
The performance of RSA algorithm implementation has direct relation with the efficiency of modular multiplication implementation.
RSA算法的执行效率与模幂运算的实现效率有着直接的关系。
补充资料:模运算性质
模运算有下述性质:
(1)若q|(a-b),则a≡b (mod q) 11 ≡4 (mod 7) 18 ≡ 4(mod 7)
(2)(a mod q)=(b mod q)意味a≡b mod q
(3) 对称性,a≡b mod q等价于b≡a mod q
(4)传递性,若a≡b mod q且b≡c mod q ,则a≡c mod q
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条