1) prime field
素数域
1.
Building scheme for nonsupersingular elliptic curve over the prime field;
一种素数域上的非超奇椭圆曲线构造方案
2.
This paper first presents the reasons why choose prime field as the base field in the implementation of Elliptic Curve Cryptography on smart card.
文章指出了在智能卡平台上选择素数域为基域实现椭圆曲线密码的原因。
2) prime fields
素数域
1.
We present an embedding algorithm on binary fields and make a comparison with that in prime fields on performance.
文章对椭圆曲线上的明文嵌入问题进行了分析,提出了二元域上的嵌入算法,并与素数域上的嵌入算法进行了性能比较。
3) large prime fields
大素数域
1.
The software implementation of the elliptic curve cryptosystem over large prime fields;
大素数域上椭圆曲线密码体制的软件实现
2.
This paper discusses the elliptic curve cryptography and its advantages from the requirements of application system security and efficiency, designs an identity authentication system based on elliptic curve over large prime fields Fp, and analyzes the security final-ly.
本文从应用系统的安全性和高效性的要求出发,阐述了椭圆曲线密码体制的基本原理及其优点,设计了一个基于大素数域Fp椭圆曲线的身份认证系统,并对该系统进行了安全性分析。
4) finite prime number field
有限素数域
1.
This paper analyzes on how to construct the encryption system on the elliptic curves which based on finite prime number field GF(p).
本文针对基于有限素数域GF(p)的椭圆曲线如何构造加密系统进行了分析,并且提出了一种简单的基于有限素数域的椭圆曲线加密系统(SECES)的实现模型,此系统对MOV方法、Smart方法等各种方法的攻击具有明显效果。
5) Small prime extension field
小素数扩域
6) Prime Field
素域
1.
The matrix satisfying certain conditions over a prime field is constructed first,and the regular or near regular parity-check matrices over GF(2) is obtained by vector substitution.
提出构造规则及准规则低密度校验码的一种新方法,即利用素域的特殊性质,首先构造素域上满足特定条件的矩阵,然后通过向量替换得到GF(2)上满足RC-约束条件的规则及准规则校验矩阵。
补充资料:超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
超导电性的局域和非局域理论(localizedandnon-localizedtheoriesofsuperconductivity)
伦敦第二个方程(见“伦敦规范”)表明,在伦敦理论中实际上假定了js(r)是正比于同一位置r的矢势A(r),而与其他位置的A无牵连;换言之,局域的A(r)可确定该局域的js(r),反之亦然,即理论具有局域性,所以伦敦理论是一种超导电性的局域理论。若r周围r'位置的A(r')与j(r)有牵连而影响j(r)的改变,则A(r)就为非局域性质的。由于`\nabla\timesbb{A}=\mu_0bb{H}`,所以也可以说磁场强度H是非局域性的。为此,超导电性需由非局域性理论来描绘,称超导电性的非局域理论。皮帕德非局域理论就是典型的超导电性非局域唯象理论。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条