1) Echo State Networks
回声状态神经网络
1.
Research on Echo State Networks (ESNs) Applied into Robotic Position Estimation Correction System;
用于机器人轨迹定位纠正系统的回声状态神经网络研究
2) echo state network tree
回声神经网络树
3) echo state network
回声状态网络
1.
Considering the shortages in the prediction of chaotic time-series using single variable,this paper studies a new multivariate chaotic time-series prediction model,which is based on the principal components analysis(PCA) and echo state networks(ESN).
针对多变量预测过程中的维数过高问题,文章结合主元分析理论(PCA)和回声状态网络(ESN),构建了基于PCA和ESN的多变量混沌时间序列预测模型,将PCA降维后的时间序列数据输入ESN网络进行预测分析。
4) dynamic recurrent neural networks
动态回归神经网络
1.
This paper presents an adaptive coposite control architecture for robot manipulators based on dynamic recurrent neural networks (DRNN).
针对模型未知和动力学非线性机器人轨迹跟踪,提出了一种基于分布式动态回归神经网络(DRNN)的自适应控制方法。
2.
First, the state equations and output equations are obtained by dynamic recurrent neural networks, repectively.
首先,利用动态回归神经网络建立其状态方程和输出方程,用Lyapunov理论证明了辩识误差∈L∞;然后,设计状态反馈控制器,使系统的输出跟踪参考输出,从理论证明了跟踪误差趋于零。
5) dynamic recurrent neural network
动态回归神经网络
1.
Then a dynamic recurrent neural network(DRNN)was built to discover the hidden spatial correlation.
构建了一个随机的时间序列模型获得每一个空间上相互独立部分的时间预测,然后建立动态回归神经网络(DRNN)发现隐藏的空间关系,最后用统计回归方法把单个时间和空间预测整合起来产生最终预测。
2.
A spatial-temporal integrated forecast method of forest fire was proposed in this paper by combining dynamic recurrent neural network(DRNN) and autoregressive integrated moving average(ARIMA) model.
提出一种基于动态回归神经网络(DRNN)和自回归集成移动平均(ARIMA)组合模型的森林火灾时空综合预测方法。
6) factor state artificial neural network
因素状态人工神经网络
补充资料:Hopfield神经网络模型
Hopfield神经网络模型
Hopfield neural network model
收敛于稳定状态或Han加Ing距离小于2的极限环。 上述结论保证了神经网络并行计算的收敛性。 连续氏pfield神经网络中,各个神经元状态取值是连续的,由于离散H6pfield神经网络中的神经元与生物神经元的主要差异是:①生物神经元的I/O关系是连续的;②生物神经元由于存在时延,因此其动力学行为必须由非线性微分方程来描述。为此,在1984年J.J.H叩fi酗提出了连续氏pfield神经网络,它可用图1所示的电路实现,其动态方程┌───┐│·T叮 │└───┘图1连续F砧pfield神经网络 (a)Sigmoid非线性;(b)神经元模型可由下述微分方程式描述: 、,产 门J /r、l、1.。瓮一客、一佘Ii认=f(u£)£=l,2,…,n式中f(·)为连续可微的Sign101d函数;T,j=兀、i,j=1,2,“’,n几=0]=i1~.吞~·‘八文一Q*+,戮T,j‘一‘,2,”一”连续时间氏pfield神经网络式的计算能量函数定义为:一告客客几从砚 石l「Vi_1,、,合,,, +乞古!‘厂‘(x)dx一乙I,从(4) ’月R‘Jo“‘、一’一月一,” 对于式(3),若f一‘为单调增且连续,C>0,T,j=几(i,j=1,2,一,n),则沿系统的运动轨道有dE一。-丁丁足之Uat当且仅当贷一。时 箭一。式(3)的稳定平衡点就是能量函数E〔式(4)」的极小点,反之亦然。同时,连续氏pfield神经网络式(3)以大规模非线性连续时间并行方式处理信息。网络的稳定平衡点对应于其计算能量函数E的极小点,网络的计算时间就是它到达稳定的时间,网络的计算在系统趋于稳态的过程中也就完成了。这也是式(3)用于神经计算及联想记忆的基本原理,也即神经计算机的基本原理。HoPfield shenling wangluo moxingHopfield神经网络模型(Hopfieldne,Ine幻即0比m侧触l)一种单层全反馈的人工神经网络模型(后称之为氏p玉idd模型),它对推动人工神经网络研究的复苏起了很重要的作用。 且,lield对人工神经网络研究的贡献主要有: (l)把有反馈的神经网络看作一个非线性动力系统,提出了系统的全局Lyap阴lov函数(或称能量函数)的概念,用于系统稳定性的分析; (2)利用上述分析方法解决人工智能中的组合优化问题,如15护;(3)给出了利用模拟电子线路实现的连续Hopfidd网络的电路模型,为进一步研究神经计算机创造了条件。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条