说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 多生物特征识别
1)  Multi-biometric Feature Recognition
多生物特征识别
1.
Network Identity Authentication Study Based on Multi-biometric Feature Recognition;
基于多生物特征识别的网络身份认证研究
2)  multibiometrics
多生物特征识别
1.
Then multibiometrics its principle, and approaches are introduced.
本文先对各种不同生物特征识别技术作了简要介绍 ,然后 ,介绍了多生物特征识别技术及其工作原理和方法 ,对生物特征识别技术的应用前景和发展方向进行了分
3)  Multi-biometric
多生物特征识别
1.
Multi-biometric identification systems also achieve an increase in performance that may not be possible by using a single biometric system.
多生物特征识别系统通过融合同一个个体的多种生物特征来减少这些问题带来的影响。
4)  multimode biometrics identification
多生物特征识别
1.
The design and application of multimode biometrics identification system based on C/S is introduced,and presents a network mode identification method based on image watermarking made by ridgelet transform,break limitations of local biometrics identification,provides a new solution for the cross-boundary biometrics identification effectively.
论述了基于C/S(Client/Server)体系结构的多生物特征识别系统的实现原理,并在脊波变换域实现图像水印技术的基础上,提出了一种在网络方式下实现身份识别的方法,突破本地生物特征识别的局限性,给跨地域性生物特征识别提供了新的解决方案,同时实现了系统原型并给出了部分测试结果。
5)  multimodal biometrics
多模态生物特征识别
1.
Design of multimodal biometrics system based on RFID technology;
基于RFID技术的多模态生物特征识别系统设计
6)  Multimodel Biometric Personal Recognition
多生物特征身份识别
补充资料:汉字识别特征


汉字识别特征
Chinese character recognition features

  汉·295·成败的主要因素。和一般模式特征类似,汉字识别特征可分为统计形式、结构形式和数学形式三类。汉字识别所抽取的汉字特征主要有:粗外围特征、粗网格特征、复杂指数和四边码、笔画密度特征、汉字特征点、短笔段特征、边框和局部特征、部件模板、笔画方向和轮廓特征、网格单元、笔画序列和各种数学变换特征等。这些特征在识别汉字时各有特色,互有优劣,它们可用于粗、细分类中。对汉字识别尚无系统性理论来指导特征的最佳选择,充分考虑汉字结构特点与规律以及识别系统的类型与要求来进行特征的选择是一种可取的方法。下面介绍几种国内外汉字识别系统中常用的汉字特征。 (1)粗外围特征抽取汉字四周轮廓信息作为特征,适用于粗分类。该特征抽取的过程为:先求出文字的外接框,再把PXq点阵文字分割成n只n份,n通常等于8。从文字四框各向相反边扫描,计算最初与文字笔画相碰的非文字部分的面积和全部面积之比作为一次粗外围特征Pl‘(£=1一4n),见图1。再将第二次与文字线相碰的非文字部分面积和全部文字面积之比作为二次粗外围特征尸2、(i二1一4n),形成sn维的粗外围特征向量P p=(尸1一,尸12,…,PI,4,,pZI,p欢,一,pZ,4,) (1) 一次粗外围特征反映了文字轮廓特征,二次粗外围特征在某种程度上反映了文字内部结构。粗外围特征是日本学者首先提出的。首先提出的,主要用于粗分类。 (3)汉字特征点汉字由各种笔画构成,而笔画类型、数目和连接关系可以用笔画骨架线上的端点D、折点Z、歧点Q、交点J表示,见图2。汉字图形的背景(空白)部分,也包含了区别其他汉字的信息,选取若干关键背景点B作为特征,可以有效地区分同类中的其他汉字。这样,汉字特征点t由笔画特征点和背景关键点组成 t={D,Z,Q,J,B}(3) 图2汉字特征点示例 1二端点D;2.‘折点Z;3二歧点Q; 4.★交点几5.0关键背景点B 设T为汉字特征表达式,红是汉字特征点,K是特征点总数,凡是特征点类型(D、Z、Q、J、B),八、yk是特征点在汉字点阵中相对坐标,{八}是特征点其他属性(主要是方向属性)集合,则有T={红}走=1,2,…,Ktk=(凡,几,旅,IPk})(4)┌─┐│/ ││嵘│└─┘ 图1粗外围特征 (2)粗网格特征把加框的Pxq点阵汉字划分为nXn块,n通常等于8,取每块中黑象素数对整个文字黑象素数的比为特征向量的分量,形成护维特征向量M。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条