1) low noise bandwidth
低噪声带宽
2) broadband low noise amplifier
宽带低噪声
1.
Microwave broadband low noise amplifier is the important part of the receiver system of radar, electron rivalry, remote measuring and remote control.
微波宽带低噪声放大器是雷达、电子对抗及遥测遥控接收系统等的关键部件。
3) low-frequency broadband noise
低频宽带噪声
4) low-noise ultrabroad-band
低噪声超宽频带
1.
This paper studies the CAD technique of low-noise ultrabroad-band PIN-FET combined circuits for optical fiber communication receivers.
研究了用于光接收机的低噪声超宽频带PIN-FET组合电路的CAD。
5) noise bandwidth
噪声带宽
1.
Some realization ways of measurement are discussed,including the maximum output power,output amplitude and noise bandwidth.
讨论了低频噪声源的最大输出功率、噪声输出幅度以及噪声带宽测试的实现途径。
2.
The use of digital rating loop in Doppler radar always comes down to adjusting the noise bandwidth.
本文针对噪声带宽对测速系统指标的影响 ,对测速环路的噪声带宽选择作了详细的理论分析。
3.
Through methods of noise bandwidth and simulation, comparisons have been made between traditional supply chain and information sharing supply chain, the effect of parameters of the logistics lead times and the exponential smoothing forecast on the bullwhip effect have been analyzed.
分别利用噪声带宽和Matlab/Simulink对一个可扩展多主体线性供应链系统的牛鞭效应进行了建模与仿真研究,分析了实施信息共享前后供应链系统的牛鞭效应,探讨了物流延迟时间参数和指数平滑预测参数对牛鞭效应的影响,并给出了减弱牛鞭效应影响的相应策略。
6) broadband noise
宽带噪声
1.
To understand the flow noise generation mechanism of pump jet propulsor,this paper calculates the flow field of a torpedo pump jet propulsor,analyzes the field structure,and then calculates its broadband noise with Proudman theory.
对鱼雷的泵喷流场进行了计算,并对流场结构作了分析,然后采用Proudman理论计算了泵喷的宽带噪声,结果表明,主要噪声源区域与流场特征相一致,由此表明,流场的涡旋脉动是噪声产生的主要因素,在此基础上提出了控制泵喷流噪声的途径。
补充资料:低噪声微波技术
降低微波接收设备内部噪声的技术。其主要内容是微波低噪声(固态)器件技术和相应的微波电路技术,还涉及低温物理、量子力学等学科。微波波段接收设备的性能主要受其内部噪声的影响,外差式接收机的内部噪声取决于低噪声前端,可用噪声系数F(分贝)、有效噪声温度Te(K)或噪声量度M(分贝)等表征。接收设备的外部噪声取决于天空噪声温度极限,频率范围为0.1~1吉赫的外部噪声主要是银河系噪声;1~10吉赫范围内主要是宇宙背景噪声(3.4K),10吉赫以上则取决于大气噪声(对外空系统取决于宇宙背景噪声和光子噪声)。前端的有效噪声温度应与具体条件下作用于其输入端的外部噪声温度(主要是天线噪声温度Ta)相当。
研究概况 随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
应用 低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
性能与水平 80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
研究概况 随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
应用 低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
性能与水平 80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条