1) Kernel Nearest Neighbor Convex Hull(KNNCH)
核最近邻凸包分类
1.
Kernel Nearest Neighbor Convex Hull(KNNCH) classifier involves solving convex quadratic programming problems,which requires large memory and long computation time for large-scale problem.
为了保证核最近邻凸包分类器有效地处理大训练集的应用问题,提出一种核子空间样本选择方法与该分类器相结合。
2) nearest neighbor convex hull classifier
最近邻凸包分类
1.
Face recognition using wavelet transform and nearest neighbor convex hull classifier;
基于小波和最近邻凸包分类器的人脸识别
3) Kernel nearest neighbor convex hull
核最近邻凸包
4) nearest neighbor convex hull
最近邻凸包
6) fuzzy kernel weighted nearest prototype classifier
模糊核加权最近邻近分类器
补充资料:近邻法分类
对被识别样本某个给定近邻域中的已知类别的学习样本数量进行统计,并以其中数量最多的那一类作为分类结果的分类方法。对 k个被识别样本的近邻学习样本进行计算时,假设离被识别样本最近的5个学习样本中有3个属于某类,就把被识别样本判别为该类。当k等于1时,就是通常所说的最近邻规则,即被识别样本离哪一类的学习样本最近,就把它分到哪一类(见最小距离分类)。设R1,R2...,R0分别是已知类别的c个学习样本集合,每个集合Rj中有uj个特征向量,用x忋表示,k=1,2,...,uj。在用最近邻规则时,可以定义被识别特征向量y与Rj之间的距离为
式中‖·‖是给定的一种距离度量。分类器把被识别模式分类到d(y, Rj)值最小的那一类中去。当用欧氏距离作为距离度量时,可以证明这种方法实质上是一种分段线性分类器。理论分析表明,当学习样本无限增加时,用最近邻规则分类的结果,其误识率(错分率)不会超过贝叶斯分类器误识率的两倍。
式中‖·‖是给定的一种距离度量。分类器把被识别模式分类到d(y, Rj)值最小的那一类中去。当用欧氏距离作为距离度量时,可以证明这种方法实质上是一种分段线性分类器。理论分析表明,当学习样本无限增加时,用最近邻规则分类的结果,其误识率(错分率)不会超过贝叶斯分类器误识率的两倍。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条