1) DCIM
离散复镜像
1.
So we can use discrete complex image method(DCIM) and extract the closed-form independence of the source and observation points when they are in the same layer,and no interpolations are needed.
本文首先介绍谱域格林函数一种新的表达式,使得源点和场点在同一层时,离散复镜像法可提取出与它们无关的闭式,从而避免了插值;不在同一层时,可提取与场点无关的闭式,此时只须对源点进行一维插值,因而提高了计算效率。
2.
With the discrete complex images method(DCIM) and RWG basis functions,we can give a full-wave analysis of equivalence problems in the spatial domain without the Sommerfeld integrals.
首先利用等效原理将原问题转化为不同区域的等效问题,然后采用RWG基函数结合离散复镜像法在空域对等效问题进行全波分析。
3.
Then discrete complex images method (DCIM) is applied to obtain spatial domain Green′s functions, which enhance computing efficiency.
首先采用混合位积分方程的MoM在空域建立全波分析模型,然后采 用离散复镜像求解空域格林函数,从而提高了计算效率。
2) discrete complex image method
离散复镜像方法
1.
Discrete complex image method is used to compute the Green’s functions in the spatial domain, which improves the speed of computing the impedance matrix.
采用离散复镜像方法 (DCIM)计算微带结构的空间域格林函数 ,提高了计算阻抗矩阵的速度。
2.
To avoid calculating the time-consuming Sommerfeld′s integrals, the discrete complex image method (DCIM) is employed to obtain spatial domain closed-form Green s function for planar-layered media.
使用离散复镜像方法 (DCIM )快速得到平面分层介质的空间域的闭式格林函数 ,避免了费时的索末菲尔德积分。
3.
Two-level discrete complex image method (DCIM) is used to compute the closed-form Green s functions efficiently.
采用二级离散复镜像方法快速计算微带结构的闭式格林函数。
3) discrete complex image method(DCIM)
离散复镜像法(DCIM)
4) discrete complex image method
离散复镜像法
1.
In analyzing the RCS of microstrip antennas by MPIE-MoM,the two-level approximation discrete complex image method is applied to obtain spatial-domain Green′s function,which enhance computing efficiency.
在采用基于混合位积分方程的矩量法分析微带天线RCS时,首先采用二级离散复镜像法求解空域格林函数,从而大大提高了矩量法的计算效率,然后利用三角形网格剖分计算目标,也使得矩量法更适合分析复杂结构。
2.
Using the discrete complex image method(DCIM) and the Sommerfeld identity,the Sommerfeld integrals can be evaluated as the summation of finite complex image functions without directly numerical integration which always consumes large CPU time.
在跨界面目标的散射问题中,MPIE中的矢量势和标量势Green函数包含Sommerfeld类型的谱域积分,利用离散复镜像法(discrete compleximage method,DCIM)和Sommerfeld恒等式,将其转化为有限项复镜像Green函数的求和运算,避免了烦杂的谱域积分运算。
6) two-level discrete complex image method
二级离散复镜像法
1.
Computing the input impedance of coax-fed microstrip patch antennas by the two-level discrete complex image method;
采用二级离散复镜像法分析同轴馈电微带天线的输入阻抗
2.
In order to calculate the spatial Green s function efficiently,a new method is proposed that combines the two-level discrete complex image method(DCIM) with the treatment method for surface waves.
提出了二级离散复镜像法(DCIM)与表面波处理相结合的方法对空域格林函数进行计算。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条