2) structural neural networks
结构化神经网络
1.
A hybrid method using the genetic algorithm(GA) and the error back propagation (BP) algorithm to train structural neural networks is presented and applied to the identification of nonlinear characteristics of packaging cushioning in this paper.
提出了一种将遗传算法和BP算法相结合的关于结构化神经网络的混合训练方法 ,并将其用于解决包装件缓冲垫层非线性特性识别问题。
4) Optimized BP neural network
优化BP神经网络
1.
Optimized BP neural network has the capability of expression nonlinearity and also has the self study and adaptive function,and thus,it can realize the best parameter combination of PID control.
优化BP神经网络是一种前向神经元网络,具有学习速率快、振荡小、精度高的优点,将其隐含层单元分别作为比例(P)、积分(I)、微分(D)单元,可以建立参数自学习的PID控制器。
6) variable structure neural network
变结构神经网络
1.
An optimized algorithm of variable structure neural network based on fuzzy distance was proposed, and applied to the pattern recognition of shape signal.
提出了基于模糊距离的变结构神经网络优化算法 ,并将其用于板形信号的模式识别过程 ,有效地解决了板宽变化时神经网络拓扑结构不变的问题 ,提高了识别速度和精度 ,从而成为一种新的智能板形信号识别方
2.
For the daily electric power load with uncertainty influence factors,we first put forward the load forecasting model of the variable structure neural network based on the fuzzy classification rules.
对于受不确定因素影响的日电力负荷 ,首次提出了基于模糊分类规则的变结构神经网络负荷预测模型 ,考虑从两方面改进预测精度 ,一个方面是通过模糊分类规则 ,使过去的负荷数据分为不同气候特征 ,选用同类特征数据进行预测 ,另一个方面是通过神经网络变结构优化 ,确定最优网络和最优拟合逼近 ,从而得到最优的预测结果。
补充资料:随机网络分析与优化
随机网络分析与优化
analysis and optimization of random network
suiii wangluo fenxi yu youhua随机网络分析与优化(analvsisartimization of random network)在又机变化的外部环境和内部因素共同柞的系统进行网络描述的基础上,综合多项理论,研究系统的静态、动态牡概率分布,并寻求优化的方法和活动。包括随机网络解析法和随机网络仿真 随机网络技术是在肯定型网络杉基础上产生的。1962年,美国的E.场提出带“决策盒”的广义网络技术,步改进和完善后形成了图示评审(GERT),同时又利用控制论中的信戈理论和概率论中的矩母函数发展了GE络的解析算法。1969年,形成了相应件系统并成功应用于美国阿波罗载六计划。70年代以来,美国的普列茨丈人又进一步发展了随机网络仿真技才现了多种具有不同功能的随机网络仗统。现在,随机网络技术已广泛应拜事训练、作战指挥、后勤保障等方值筹分析中。 随机网络以下列方式描述客观暮网络中的节点表示系统状态;连接名之间的箭杆表示状态之间的传递关弃为活动);各节点具有不同的逻辑牡引出端可以有多个概率分支,并且书间的传递关系服从一定的概率分布;中允许回路和自环存在。广义网络摇随机网络的一般形式,其节点的输人立oP-撇汗拥印要术粕哟拯沐汹啊嫩朔噜出辐浑腿乞宁点(称E;天之习络竺是有3渝人和 肯定刁逻辑或”型三是一兰利用、网络无率论卜种概习络在了“异j)的j,j) 的条 ·从泊tjj,劲络,天之间种类型:“与”型输人、“或”型车 “异或”型输人;输出端有2种类型:型输出和概率型输出,共构成6种不「功能的节点(见网络分析)。只含“异节点的随机网络称为GERT网络,勺种典型的线性系统。 随机网络解析法的基本原理,尖控制论中的信号流图理论计算GER广中各节点之间的传递关系,并利用札中矩母函数的基本性质计算网络的耀率分布数字特征,从而得到GERT「平稳状态下的解析解。设状态j,j均步或”型节点,随机变量岛为活动(人活动周期,Ptj为节点i实现时活动(被执行的概率一M公(s)为活动(j,j)件矩母函数,令传递函数为矶(s)二厂(s),故对于每项活动的两个参数只总可以用一个参数Wjj(s)来代替。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条