1) coupling pulse
耦合脉冲
1.
This text introduced a kind of detection and process system of press sensing signal, practically introduced the module for coupling pulse occurrence circuit and the module for signal collection and amplification.
详细介绍其中的耦合脉冲发生电路模块和信号采集、放大模块。
2) Pulse-coupled
脉冲耦合
1.
Time Synchronization in Sensor Network with Pulse-coupled Oscillator
脉冲耦合振荡器实现传感器网络时间同步
4) coupling chirped-pulse
耦合啁啾脉冲
1.
By using the multi-photon nonlinear Compton scattering conception and the model of the non- linear scattering between an electron and a photon,the propagation equations of the laser amplification of the coupling chirped-pulse in the total internal reflective photonic crystal fiber are built.
应用多光子非线性Compton散射概念和电子与多光子集团非线性散射模型,建立了全内反射光子晶体光纤中耦合啁啾脉冲激光的输运方程,理论分析和数值模拟了该过程中Compton散射对自相位调制的影响。
5) impulsively coupled system
脉冲耦合系统
1.
This paper presents a new impulsively coupled system model.
本文根据实际问题提出了一种新的脉冲耦合系统模型的同步,所考虑的网络节点间并不存在连续耦合,而节点间仅仅通过脉冲方式进行耦合。
6) pulse-coupled oscillators
脉冲耦合振荡器
1.
According to characteristics of sensor nodes,the paper presents an improved linear pulse-coupled oscillators model based on fireflies mutual-synchronous mode of pulse-coupled oscillator model.
针对WSN传感器节点特点,基于萤火虫互同步模式的脉冲耦合振荡器模型,提出了一种改进的线性脉冲耦合振荡器模型。
补充资料:jj 耦合
由给定电子组态确定多个价电子原子的能量状态的一种近似方法。它适用于原子中各价电子间的静电斥力势能之和远小于各价电子的自旋轨道磁相互作用能之和的情况,单个电子的轨道角动量pli将和其自旋角动量psi耦合成该电子的总角动量pji,,ji是第i个价电子的总角动量量子数,媡=h/2π,h是普朗克常数。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
以两个非等效电子为例,设电子组态为(n1l1n2l2),n1、n2和 l1、l2分别为两电子的主量子数和轨道量子数,电子的自旋量子数都为1/2,即s1=s2=1/2,按原子的矢量模型,电子轨道角动量 pli与自旋角动量 psi耦合,。原子jj 耦合的多重谱项则由各种可能的(j1j2)确定,不同谱项间能量差别相对来说比较大,而两电子间静电作用使与耦合成原子的总角动量PJ,pJ=+,J为原子总角动量量子数,J=j1+j2,j1+j2-1,...,|j1-j2|,由于这种静电作用远小于电子的轨道与自旋相互作用,因此同一多重谱项中由于电子间静电作用而引起的不同J值的能态间距是很小的。jj 耦合形成的原子态符号是(j1j2)J 。
对于等效电子(见原子结构),耦合时要考虑泡利不相容原理,所形成的原子态要比非等效电子形成的原子态少。例如两个等效p电子经jj 耦合只能形成、、五种原子态,而两个非等效p电子经jj 耦合将形成、、和等十个原子态。
jj 耦合常适用于确定重元素原子的受激态和轻元素原子的高受激态,有时还适用于确定重元素的基态(例如Pb原子的基态)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条