1) Degradation ofp-n junction
pn 结退化
2) Degradation of p-n junction
pn结退化
3) bond deterioration
粘结退化
4) Pn
Pn
1.
Effect of Potassium on Diurnal Variations in Pn, Hill Reaction and SOD Activities in Rice Plant;
钾营养对水稻光合速率(Pn)、Hill反应及SOD活力日变化的影响
2.
Probing into CDMA 2000 searching window——using PSMM to calculate PN、and set up searching window limits;
CDMA2000搜索窗探索——利用PSMM计算PN、设置搜索窗范围
3.
Distributions of TSM,POC and PN in the Changjiang Estuary Area in Autumn After the River Closure at Three Gorges;
三峡截流后长江口秋季TSM、POC和PN的分布特征
5) pn junction
pn结
1.
Linear analysis of the PN junction as a temperature sensor;
PN结传感原理线性化分析
2.
Study on overlapping principle of PN junction in nonlinear zone of photoelectric cell;
光电池非线性区PN结光生伏特效应的研究
3.
Application of PN junction temperature compensation in pressure transmitter;
PN结温度补偿法在压力变送器中的运用
6) pn-pair
pn对
1.
It was supposed that,the nucleus was composed of α-cluster,pn-pair,and nn-pair.
设想把原子核看成由α-结团,pn对,nn对组成,发现pn对、nn对和α-结团之间的相互作用造成了在奇异核中分离nn对时所需的分离能的有规律变化。
参考词条
补充资料:PN结
在一块单晶半导体中,一部分掺有受主杂质是 P型半导体,另一部分掺有施主杂质是N型半导体时,P型半导体和 N型半导体的交界面附近的过渡区称为PN结。PN结有同质结和异质结两种。用同一种半导体材料制成的PN结叫同质结,由禁带宽度不同的两种半导体材料(如GaAl/GaAs、InGaAsP/InP等)制成的PN结叫异质结。制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。制造异质结通常采用外延生长法。
基本特性 在 P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。N型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区(图1)。P型半导体一边的空间电荷是负离子,N型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。
PN结加反向电压时,空间电荷区变宽,区中电场增强。反向电压增大到一定程度时,反向电流将突然增大(图2)。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿和雪崩击穿,图2的AB段表明电流变化很大,而PN结上的电压变化很小。利用这种特性可以制作稳压元件。
PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。
PN结的应用 根据PN结的材料、掺杂分布、 几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管;利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个PN结之间的相互作用可以产生放大、振荡等多种电子功能。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。
基本特性 在 P型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。N型半导体中有许多可动的负电子和固定的正离子。当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。空穴和电子相遇而复合,载流子消失。因此在界面附近的结区中有一段距离缺少载流子,却有分布在空间的带电的固定离子,称为空间电荷区(图1)。P型半导体一边的空间电荷是负离子,N型半导体一边的空间电荷是正离子。正负离子在界面附近产生电场,这电场阻止载流子进一步扩散,达到平衡。
在PN结上外加一电压,如果P型一边接正极,N型一边接负极,电流便从P型一边流向N型一边,空穴和电子都向界面运动,使空间电荷区变窄,甚至消失,电流可以顺利通过。如果N型一边接外加电压的正极,P型一边接负极,则空穴和电子都向远离界面的方向运动,使空间电荷区变宽,电流不能流过。这就是PN结的单向导电性。
PN结加反向电压时,空间电荷区变宽,区中电场增强。反向电压增大到一定程度时,反向电流将突然增大(图2)。如果外电路不能限制电流,则电流会大到将PN结烧毁。反向电流突然增大时的电压称击穿电压。基本的击穿机构有两种,即隧道击穿和雪崩击穿,图2的AB段表明电流变化很大,而PN结上的电压变化很小。利用这种特性可以制作稳压元件。
PN结加反向电压时,空间电荷区中的正负电荷构成一个电容性的器件。它的电容量随外加电压改变。
PN结的应用 根据PN结的材料、掺杂分布、 几何结构和偏置条件的不同,利用其基本特性可以制造多种功能的晶体二极管。如利用PN结单向导电性可以制作整流二极管、检波二极管和开关二极管;利用击穿特性制作稳压二极管和雪崩二极管;利用高掺杂PN结隧道效应制作隧道二极管;利用结电容随外电压变化效应制作变容二极管。使半导体的光电效应与PN结相结合还可以制作多种光电器件。如利用前向偏置异质结的载流子注入与复合可以制造半导体激光二极管与半导体发光二极管;利用光辐射对PN结反向电流的调制作用可以制成光电探测器;利用光生伏特效应可制成太阳电池。此外,利用两个PN结之间的相互作用可以产生放大、振荡等多种电子功能。PN结是构成双极型晶体管和场效应晶体管的核心,是现代电子技术的基础。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。