1) m-sequence transform
m序列变换
1.
Based on the ergodicity of the shifters (except for all zero-states) in m-sequence generator, in this paper a new ?m-sequence transform? method is first proposed to apply to image position permutation.
该文利用m序列发生器中移位寄存器状态的遍历性(全零状态除外),首次提出一种“m序列变换”用于图像位置置乱的方法。
2.
After analyzing the m-sequence generating principle,a new image position scrambling method named m-sequence transform and a new image value of pixels substitution method named m-sequence integer modulation were presented respectively.
分析了m序列产生原理,分别提出了图像位置置乱的“m序列变换”方法和图像像素值替代的“m序列整数调制”方法,研究了m序列变换的图像加密效果。
2) fast m-sequence transform
快速m序列变换
1.
To explore the characteristic of the complicated system under powerful noise disturbances,a fast m-sequence transform(FMT) algorithm is implemented.
为探测强噪声干扰下的复杂系统性能,实现了快速m序列变换(F ast m-sequence transform,FM T)算法。
3) Sequence transfornation
序列变换
4) correlation analysis M sequence Hadamard transform Galois field
相关分析M序列Hadmard变换Galois域
5) M-sequences
M序列
1.
Research and realization of m-sequences based on MAX+plus Ⅱ 10.0 software;
基于MAX+plus Ⅱ 10.0软件的m序列的研究与实现
2.
The algorithm needs to generate two chaotic sequencesand uses m-sequencesas the perturbation sequencein order to enhance security.
讨论了一种混沌加密算法,此算法需生成 2个混沌序列,并用M序列对明文置乱,以增强保密性。
3.
This paper analyzed the characters and generation of m-sequences,and analyzed the wide application of m-sequences in the scrambling code of mobile communication.
分析了m序列的特性和生成,并以下行扰码的生成为例,研究了利用m序列生成广泛用于移动通信中的扰码。
6) m-sequence
m-序列
1.
A Sufficient and Necessary Condition on Judging m-sequence;
判别一个序列是m-序列的一个充要条件
2.
To enhance the dynamic range of decay curves and obtain accurate reverber-ation time under the condition of strong background noise, nonlinear filtering of impulseresponse obtained by M-sequence correlation technique is presented in the paper.
本文提出采用非线性滤波抑制在强背景噪声环境中用M-序列相关法得到的房间脉冲响应中的残余噪声影响,以扩大混响衰减曲线的动态范围,从而达到能够在强背景噪声环境下准确测量混响时间的目的。
3.
m-sequence is one of the most widely used codes in spread spectrum communications.
m-序列是扩频通信中使用最广泛的一种扩频码序列。
补充资料:N点有限长序列的离散傅里叶变换
时域N点序列χ(n)的离散傅里叶变换(DFT)以X(k)表示,定义为
(1)
式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
(2)
式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
DFT的原理 是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N。
DFT的主要性质 共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
DFT的快速算法 又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
(1)
式中K=0,1,...,N-1。式(1)称为DFT的正变换。从式(1)可以导出
(2)
式中n=0,1,...,N-1。式(2)称为DFT的逆变换。式(1)和式(2)合起来称为离散傅里叶变换对。
由于在科学技术工作中人们所得到的离散时间信号大多是有限长的N点序列,所以对N点序列进行时域和频域之间的变换是常用的变换,另外 DFT有它的快速算法,使变换可以在很短的时间内完成,所以DFT是数字信号处理中最为重要的工具之一。
DFT的原理 是以给定的时域N点序列χ(n)作为主值周期进行周期延拓(即使之周期化)得到以 N点为周期的离散周期序列χ((n))N,再求χ((n))N的离散傅里叶级数(DFS)表示(见离散时间周期序列的离散傅里叶级数表示),得频域的N点离散周期序列X((k))N,最后从X((k))N中取出其主值周期,即得X(k)。同理,与此相似,如果已知X(k)求χ(n),则是从X(k)得X((k))N,再从X((k))N得χ((n))N,取出主值周期即得χ(n)。这个概念很重要,DFT的性质大都与此有关。至于从χ(n)求X(k),或已知X(k)求χ(n)则是用(1)式或(2)式直接进行的,并不需要通过χ((n))N和X((k))N。
DFT的主要性质 共有5点,如下表中所列。表中a、b为常数, χ((m))N为以N点为周期的周期序列,χ((n+m))N为χ((n))N序列整体左移m点后的结果其他符号如X((k+l))N,X((l))N,Y((k-l))N及y((n-m))N等可类推其含义,不一一列出。
DFT的快速算法 又称为快速傅里叶变换(FFT)。当序列的长度N为2的整数次幂(即N=2,&λ为整数)时,算法的指导思想是将一个N 点序列的DFT分成两个N/2点序列的DFT,再分成四个N/4点序列的DFT,如此下去,直到变成N/2个两点序列的DFT。这种快速算法的计算工作量与DFT的直接计算的计算工作量之比约为log2N/(2N),以N=1024为例FFT的计算工作量仅约为DFT直接计算的1/200。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条