1) average likelihood
平均似然比
1.
In this paper,we develop a new approximately maximum average likelihood algorithms for modulation classification of MPSK signal,introduce average likelihood method,gain approximately classify statistics via received signal sampled and main parame- ters approximated.
针对MPSK信号的调制识别问题,本文提出了一种新的近似最大似然比调制分类算法,采用平均似然比检测方法,通过对接收信号的离散化和对主要参数的简化近似,得到了离散情况下的近似分类统计量。
2) mean likelihood
平均似然估计量
3) Moving Average Maximum Likelihood (MAML) estimation
滑动平均极大似然估计
4) Likelihood ratio
似然比
1.
Multi-dimensional correlation test based on the probability integral translation and likelihood ratio
基于概率积分变换与似然比的高维相关性检验
2.
Discrete calculation of signal to noise ratio and likelihood ratio are discussed in detail,and one practical algorithm for the digital implementation of RPPT Detector is presented.
文章提出了高分辨率雷达目标随机参量脉冲串检测器的数字实现方法;详细讨论了离散条件下信噪比与似然比的计算,给出了RPPT检测器数字实现的一种实用算法。
3.
By making use of the notion of likelihood ratio and the approach of Laplace trans- form,a class of strong limit theorems represented by inequalities which call the strong deviation theorems are obtained.
研究了相依连续型非负随机变量序列的极限性质,利用似然比的概念和Laplace变换方法得到了一类强偏差定理,即用不等式表示的一类强极限定理。
5) likelihood ratio order
似然比序
1.
This paper investigates the likelihood ratio order and the increasing convex (concave) order for exponential family of distributions.
主要讨论两个服从同一指数型分布族的随机变量x和y之间的似然比序,一般随机序和单增凸(凹)序,并得到了判别上述序成立的一些充分条件。
2.
In this paper, we investigate the likelihood ratio order, the usual stochastic order and he increasing convex (concave) order in Gamma family of distributions.
主要讨论两个服从Gamma分布Γ (α ,λ)的随机变量X和Y之间的似然比序 ,一般随机序和单增凸 (凹 )序 ,并得到了判别上述序成立的一些充分条件 。
3.
It is established the conditions to ensure the stochastic comparison of the Likelihood ratio order between the groups of random variables.
研究了两组随机变量列之间似然比序的随机比较 ,得到的结果推广了 Shaked 和 Shan-thikumar( 1 994)中的 Theorem1 。
6) likelihood ratio ordering
似然比序
补充资料:似然比检验
分子式:
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
CAS号:
性质:假设总体X是连续型的,其密度是p(x),则x1,x2,…,xn,的联合密度为g(x1,x2,…,xn)= p(x1)。关于样本的密度函数g(Xl,X2,…Xn;θ)有两个假设,H0:g(x1,x2,…xn;θ0)=p(xi, θ0)和H1:g(x1,x2,…xn;θ1)=p (xi;θ1)。统计量L(X1,X2,…,Xn)=称为假设H0对H1的检验问题的似然比。以似然比作统计量的检验,称作似然比检验。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条