1) semi-partition complete digraphs
半部完全有向图
2) semicomplete multipartite digraphs
半完全多部有向图
1.
Volkmann 6 raised a problem:determine other sufficient conditions for semicomplete multipartite digraphs such that every arc is contained in a Hamiltonian path.
用一条弧或一对方向相反的弧代替完全多部无向图的每一条边所得到的有向图被称为半完全多部有向图。
2.
The main contents of this thesis involve two aspects of digraphs: the transitivity of multipartite tournaments and the 3— kings-of-kings in semicomplete multipartite digraphs.
本文的研究内容涉及有向图的两个方面:多部竞赛图的传递性和半完全多部有向图的3-王中王。
3) locally semicomplete digraphs
局部半完全有向图
4) locally in(out)-semicomplete digraph
局部内(外)半完全有向图
5) symmetric complete bipartite digraph
对称完全二部有向图
6) complete directed graph
完全有向图
1.
Let DK v denote the complete directed graph with v vertices,covering number C(v,m) of DK v is a minimum number of covering DK v by m circuits.
给出了完全有向图DKv的覆盖数C(v,m),这里v=m+5,2m-3且m是大于1的奇数。
补充资料:部人
1.辖境内的居民。 2.犹部下。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条