1)  2-D Gabor filter
二维Gabor滤波器
2)  two-dimensional
二维
1.
Analysis of the effect on two-dimensional transport-burnup calculation of dual-cooled waste transmutation blanket for FDS-I;
聚变驱动次临界堆输运燃耗计算二维效应分析研究
2.
Two-dimensional laser diameter detector;
JCJ-IIT二维激光测径仪
3.
Discussion of two-dimensional projective correspondence and perspective correspondence;
二维射影对应与透视对应的探讨
3)  two-dimension
二维
1.
Fabrication of ordered two-dimensional metal nanoparticle arrays;
二维金纳米微粒有序阵列的制备
2.
The Practice of Two-dimension Rights Control in the Road Transportation Management System;
二维权限设置在道路运输管理系统中的实现
3.
The study and the application of two-dimension water flow and sediment mathematical model in the river;
天然河道水沙平面二维数学模型研究
4)  2d
二维
1.
2D unstructured dynamic mesh research on store separation;
外挂物投放问题的二维非结构动态网格技术研究
5)  Two dimensional
二维
1.
High accuracy algorithm of numerical solutions of two dimensional hammerstein equations;
二维Hammerstein方程数值解的高精度算法
2.
The study on large scale two dimensional Bin Packing Problem and its tabu search algorithm;
大型二维装箱问题及其禁忌算法研究
3.
Comparing of results of two dimensional, quasi three dimensional and three dimensional models for groundwater;
地下水流二维、准三维及三维模型模拟结果比较
6)  two dimension
二维
1.
Preparation of one dimension, two dimension and three dimension Si- based nanowires;
一维,二维和三维Si基纳米线的制备
2.
The two dimension seshima and the three-dimension window;
二维的妹岛 三维的窗
3.
Theorem for approximation by two dimension Meyer - K■nig and Zeller Operators;
二维Meyer-Knig and Zeller算子的逼近定理
参考词条
补充资料:维纳滤波
      利用平稳随机过程的相关特性和频谱特性对混有噪声的信号进行滤波的方法,1942年美国科学家N.维纳为解决对空射击的控制问题所建立。维纳滤波是40年代在线性滤波理论方面所取得的最重要的成果。
  
  滤波问题  用x(t)表示信号的真实值,n(t)表示噪声,其中t表示时间,则实际上观测到的信号是
  
  
  
   z(t)=x(t)+n(t)滤波就是要从实测信号z(t)中尽可能滤掉噪声n(t),以得到真实信号x(t)的良好估值。数学上,滤波问题可以归结为根据z(t)来求出x(t)的最优估值憫(t)。
  
  维纳滤波中,最优估值憫(t)是在均方误差的数学期望E[x(t)-憫(t)]2取极小意义下的一种估值。在假定信号过程x(t)与噪声过程n(t)为联合平稳和假定在半无限时间区间(-∞,t)内能获得z(t)的全部观测数据的前提下,维纳滤波给出了计算最优估值憫(t)的一种方法。
  
  维纳滤波器  实现维纳滤波方法的系统或装置称为维纳滤波器。维纳滤波器在结构上是一个定常线性系统(见图),通过合理的设计可使其对噪声n(t)具有良好的过滤特性。当观测信号z(t)=x(t)+n(t)输入滤波器时,它的输出就是信号x(t)的最优估值憫(t)。
  
  构造维纳滤波器的步骤  假设维纳滤波器的单位脉冲响应函数是h(t),则最优估值憫(t)的关系式为
  
  
  
  如用Rxz(τ)表示x(t)和z(t)的互相关函数,Rzz(τ)表示z(t)的自相关函数,那么业已证明它们之间具有类似于上式的关系式
  
   这个关系式称为维纳-霍夫方程。如果所讨论的各随机过程均具有各态历经性,则式中的Rxz(τ)和Rzz(τ)均是已知的。设计维纳滤波器的问题,可归结为从维纳-霍夫积分方程中解出未知函数h(t)。h(t)的拉普拉斯变换就是所要决定的维纳滤波器的传递函数H(s)。对于一般问题,维纳-霍夫方程往往不易求解。但当给定问题的随机过程的功率谱密度是有理分式函数时,H(s)的显式解就可比较容易地定出。根据求得的H(s)即可构造所需的维纳滤波器,而信号的最优估值憫(t)则可由相应关系式定出。
  
  维纳滤波器的优缺点  维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声n(t)为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多。
  
  参考书目
   钱学森、宋健:《工程控制论》(下册),科学出版社,北京,1981。
   Y.W.Lee, Statistical Theory of Communication, John Wiley and Sons,Inc.,New York,1960.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。