1) double discriminant subspace
双决策子空间
1.
Novel facial expression recognition method based on double discriminant subspace and neural network;
基于双决策子空间和神经网络的人脸表情识别
2) decision space
决策空间
1.
Decision Network Planning Model and Its Optimization in Multiple Decision Spaces
面向多决策空间的决策网络计划模型及优化方法研究
2.
The knowledge dependent relation diagram is put forward,both the n-dimensional knowledge granularity decision space and the same construction mapping decision space based on multi-decision sorts are established,and the decision algorithm is further presented.
利用粗糙集理论中的粗度概念,在对获取产品设计知识进行扩展性粒度描述的基础上,通过引入知识依赖关系图,构造了n维知识粒度决策空间以及基于多决策类的同构映射决策空间,提出了基于知识依赖关系图和决策空间的决策算法,并结合产品设计中滚动轴承选择决策说明其实用性。
3.
Then dimensional knowledge granularity decision space and the same construction mapping decision space based on multi-decision sorts is established, and decision algorithm based on KDRD and decision space is introduced.
本文利用粗糙集理论中的粗度概念,在对获取规则进行扩展性的粒度描述的基础上,提出了一种工具--知识依赖关系图(KDRD),构造了n维知识粒度决策空间以及基于多决策类的同构映射决策空间,建立了基于KDRD和决策空间的决策算法,并结合机械故障诊断说明了本方法非常适于故障诊断等通过结论获取原因的智能决策系统。
3) spatial decision-making
空间决策
1.
Research and implementation of spatial decision-making system for secure production of farm produce;
面向农产品安全生产的空间决策系统研究与实现
4) spatial decision
空间决策
1.
The global production or local production networks are becoming more and more popular,and fac-tors affecting the investment spatial decision should be re-considered accordingly.
网络权力已成为影响企业投资空间决策的重要因子之一。
5) spatial decision support system
空间决策
1.
Intelligent spatial decision support system for variable rate fertilizing -using ArcView GIS on precision agriculture;
变量施肥智能空间决策支持系统VRF-ISDSS——地理信息系统Arc View GIS在精细农业中的应用
2.
Neural network method may replace or supply the symbolic method in intelligent spatial decision support system.
分析了智能决策支持系统的结构,通过比较指出了基于符号的知识表达与推理方法的不足,阐述了基于神经网络的知识表达与推理的方法,并认为神经网络方法可作为智能空间决策支持系统中符号方法的替代或补充,并通过实例验证了基于神经网络的不确定空间知识表达与推理的有效性。
6) spatial decision making
空间决策
1.
AbsractThis paper gives a brief analysis of the development and applications of artificial intelli-gence in spatial analysis and spatial decision making.
最后,文章亦浅论了如何对非结构性空间知识、结构性空间知识(如数学及统计模型)及空间信息系统作综合及交替运用于空间分析及空间决策。
补充资料:亏子空间
亏子空间
eficiency subspace ^ defect subspace, defective subspace
亏子空间【山反妇娜田加,ce或山免以s而p暇,山丘尤tivesubspaCe;八e中eKTooe no皿n一oeTpaoeT.1,算子的 算子A,二A一又I的值域兀二{y=(A一又I)x:x任D,}的正交补D,,其中A是定义于Hilbert空间H中的线性流形D,上的线性算子,而几是A的一个正则值(正则点).这里,一个算子A的正则值(比孚血r从司ueofanoperator)理解为参数又的一个值,使方程(A一又I)x二y对任何y有唯一的解,而算子(A一又I)”是有界的,即A的预解式(~l-瓤)(A一又I)一‘有界.当又变化时,亏子空间D*也随着变化,但是对属于A的全部正则值构成的开集的一个连通分支的一切之,亏子空间D*的维数是相同的. 如果A是一个具有稠密定义域几的对称算子,它的正则值的连通分支是上半及下半平面.在这一情形下,D*一{x任D矛:A’二一Ix},其中A’是A的伴随算子,而亏量叭二djln只及。一dimD一,均称为算子A的(正的及负的)亏指数(由反记ncy indi-渭of an opemtor).此外 D,·=D,OD:①D_,,即D,·是D,,D‘,D_,的直和.因而,如果n十=作_=O,那么算子A是自共扼的;否则,一个对称算子的亏子空间便刻画了它偏离一个自共扼算子的程度. 亏子空间在构造对称算子到极大算子或自共扼算子(超极大算子)的扩张中起着重要作用.[种比,工圆粼出阴摹丁即牛脚粤LI七g切以J仙‘Ulano拌rator)的定义不十分正确而应理解如下.值又是A的一个正则值,如果存在正数介=k(劝>O,使得对一切x6几,}(A一久I)x]})kl{xj}成立.在这种情形下,A一又I的核仅由零向量组成,且A一又I的象是闭的(但不必等于整个空间).王声望译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条