1) minutiae extraction
细节特征提取
1.
Minutiae extraction is one of the core techniques of automatic fingerprint identification.
常规的指纹细节特征提取算法需要先采用纹线跟踪的方法对细化后的指纹图象进行纹线修复 ,然后再实现细节特征提取 。
2) Rhythms detection
特征节律提取
3) cell feature extraction
细胞特征提取
1.
In this paper,a cell segmentation method based on 8-neighborhood gray level difference and canny\'s operator,and also a cell feature extraction method based on canny\'s operator and Ring-Projection are proposed to detect the object of interest and extract effective feature in characterizing the red blood cell and white blood cell.
针对尿沉渣图像成像的特殊性以及图像中各有形成分特点,对图像处理和特征提取带来的影响,提出了一种基于8-邻域灰度差分和canny算法的细胞分割算法以及基于canny算子和环投影细胞特征提取方法,以便有效进行细胞定位、细胞封闭轮廓提取以及常见有形成分中红、白细胞特征的提取。
4) feature extraction
特征提取
1.
Feature extraction from carbon fiber composites ultrasonic signals based on wavelet packet transform;
基于小波包变换的复合材料超声波检测信号特征提取
2.
New feature extraction method for laser-induced fluorescence spectra;
一种激光诱导荧光光谱特征提取新方法
3.
Statistics analysis and feature extraction of EEG for imaging left-right hands movement;
基于想象左右手运动脑电特征提取及其统计特性分析
5) features extraction
特征提取
1.
A image processing and features extraction method for structured light image of welding seam;
一种焊缝结构光图像处理与特征提取方法
2.
Features extraction and recognition of parts emage based on IMAQ;
基于IMAQ的零件图像特征提取和识别
3.
Image processing and features extraction of molten pool for pipe welding;
管道焊接熔池图像处理与特征提取
6) feature extracting
特征提取
1.
Robust image feature extracting and matching algorithm for mobile robots vision
移动机器人视觉图像特征提取与匹配算法
2.
In this paper,a method of feature selecting and feature extracting based on wavelet was proposed.
基于小波变换提出了一种特征提取及特征选择的方法。
3.
The feature extracting is an important,difficult step in the fault diagnosis processing.
在机电设备的故障诊断中,特征提取是最重要也是最困难的一个环节。
补充资料:特征提取
特征提取
feature extraction
t6Zheng tiqu特征提取(featu了eextraction)特征选择与提取的通称。特征选择和提取是模式识别的关键环节,其任务是压缩存在于表示模式的原始测量数据中的冗余和无关的信息,提取一组对分类最有效的特征参数,以减少计算工作量,提高分类器的性能。特征参数可以从输人模式信息中选出一个子集构成,这一过程称为特征选择。新的特征参数也可以通过降维变换获得,即将输人模式从较高维数的测量空间变换到较低维数的特征空间,以一个低维特征向量表示输人模式,这一过程称为特征提取。 由于特征提取的任务是求出一组对分类最有效的特征,因此首先需要一个能定量评估特征有效性的准则。分类器的误识概率可作为理想的准则,但由于估计误识概率的分布非常困难,实用时往往以其他一些准则代替。常用的准则有:基于概率距离的准则,基于类间距离的准则,基于墒函数的准则等。应用上述准则,可以通过分支定界和顺序搜索等优化算法,求得一个最优的或次优的特征集。近年来基于人工智能的启发式算法也在特征选择中得到应用。在进行降维变换以实现特征提取时,考虑到可分析性和计算可行性,一般采用线性变换方法,.最常用的是以K一L扩展为基础的线性变换。(黄泰冀)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条