1) optimum signal threshold ratio
最佳信号门限比
1.
As a result,the concept of optimum signal threshold ratio was.
证明在一定范围内,由回波幅度变化所造成的测距误差与由回波脉宽变化引起的测距误差,随鉴别电平的取值不同,呈现出相反的变化趋势,即最佳信号门限比的存在,并导出了相应的计算公式。
2) Perfect signal
最佳信号
1.
On its ap- plication,a new DCSPF of the length 2N and number of arrays 2Q can be constructed by combing a DCSPF quasiperfect array with the length N and number of arrays of Q and a 2-dimensional quasiperfect array,thus providing more perfect signals.
使用这种方法,可以用一个长度为、组数为的并元互补码偶族和一个2维的准最佳二进阵列,构造成新的一类长度为、组数为的并元互补码偶族,为实际工作中提供了更多的最佳信号。
2.
With this method more perfect signals could be obtained in engineering.
研究表明该构造方法灵活、简便,为实际工程应用提供了更多的最佳信号。
3.
In practice the demands of practical engineering are so various that there haven t any criterion of the perfect signals that can adapt to all kinds of engineering, so there have not a clear defmation of perfect signals.
此研究内容属于最佳信号理论范畴。
3) optimum switching-level
最佳门限值
5) Optimal green signal ratio
最佳绿信比
补充资料:门限译码
按检验方程中发生错误的个数是否超过一半(门限)来判决该位是否有错的一种译码方法。它可用于译某些分组码,也可用于译某些卷积码,但效率一般较低。门限译码是从最大后验概率译码法演变来的,但这种算法依赖码的代数构造,译每个码元的计算量是固定的。用Pr(ei=z/r)表示接收到r的条件下,叠加在第i个码元上的差错分量ei等于z(z=0或1)的后验概率,若
Pr(ei=0/r)>Pr(ei=1/r)
(1)
就判ei=0,否则判ei=1,这是最大后验概率译码。后验概率不易计算,通过运算可将式(1)写成条件
f(p,,ei)>T
(2)
式中p为信道误码率;T为门限值。当满足式(2)时,就判ei为1,否则就判ei=0。这种译码称为门限译码。一般的门限译码提取信息比较有效,但实现较复杂。择多逻辑译码是应用最广泛的形式。若对每个ei能构造出一组由下式表述的校验关系:
(3)式中对任一k厵i和所有j,a中至少有一个可取值为1,则在方程组(3)中,ei在每一方程中都出现一次,而其他的ek(k厵i)至多只能在式(3)中的某个方程中出现一次。称式(3)为对码元 ei的正交一致校验和式。若码组中错误个数不超过[J/2],则按下述判决规则就能保证正确译码:
(4)[J/2]表示小于J/2的最大整数。这种译码即称为择多逻辑译码。在分组码条件下还可将上述一步判决推广到L步判决,L为整数,称作L步择多逻辑译码。适用于这种译码的分组码有里德·莫勒码、差集循环码、欧氏几何码和射影几何码等。适用于这种译码的卷积码有自正交码、等距码和用试凑法构造的大量的可正交码。这些码都有广泛的实用价值。
(1)
就判ei=0,否则判ei=1,这是最大后验概率译码。后验概率不易计算,通过运算可将式(1)写成条件
(2)
式中p为信道误码率;T为门限值。当满足式(2)时,就判ei为1,否则就判ei=0。这种译码称为门限译码。一般的门限译码提取信息比较有效,但实现较复杂。择多逻辑译码是应用最广泛的形式。若对每个ei能构造出一组由下式表述的校验关系:
(3)式中对任一k厵i和所有j,a中至少有一个可取值为1,则在方程组(3)中,ei在每一方程中都出现一次,而其他的ek(k厵i)至多只能在式(3)中的某个方程中出现一次。称式(3)为对码元 ei的正交一致校验和式。若码组中错误个数不超过[J/2],则按下述判决规则就能保证正确译码:
(4)[J/2]表示小于J/2的最大整数。这种译码即称为择多逻辑译码。在分组码条件下还可将上述一步判决推广到L步判决,L为整数,称作L步择多逻辑译码。适用于这种译码的分组码有里德·莫勒码、差集循环码、欧氏几何码和射影几何码等。适用于这种译码的卷积码有自正交码、等距码和用试凑法构造的大量的可正交码。这些码都有广泛的实用价值。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条