1) minimal support invariant
最小支撑不变量
3) least square support vect
最小二乘支撑向量机
1.
Based on the Lyapunov stability theory,this dissertation is mainly on the design of the robust adaptive controllers for uncertain time delay systems subject to different assumptions by using linear matrix inequalities(LMIs),and the design of the adaptive control of a class of nonlinear discrete-time systems by the use of least square support vector machine algorithm (LSSVM).
本文主要基于Lyapunov稳定性理论,以线性矩阵不等式(LMI)和最小二乘支撑向量机(LSSVM)为主要工具,研究了不确定时滞系统满足不同设计要求的各种鲁棒自适应控制问题和一类仿射非线性离散系统的自适应控制问题。
4) minimal support set
最小支撑集
1.
Based on the area of support set, a function whose minimum determines the minimal support set (MSS) was constructed.
构造了基于支撑集面积的目标函数 ,其极小值点确定了最小支撑集 (MSS) 。
5) minimum spanning tree
最小支撑树
1.
In this paper, aiming at the complicated web graph denoted by relation matrix ,based on the analysis of the features of the elements constituting the minimum spanning tree, two methods of getting the minimum spanning tree, method of directly getting and performing on the table, have been put forward.
针对关系矩阵表示的复杂网络图 ,分析构成其最小支撑树的元素特点 ,提出两种求最小支撑树的方法 :直接生成法和表上作业法 。
2.
The arithmetic of that a minimum spanning tree deletes edges with the largest weight is another algorithm,which is on the basis of Kruskal algorithm,Prim algorithm and the Deleting circults.
最小支撑树的一种删除大权边算法是在Kruskal算法、Prim算法和破圈法的基础上,提出的另一种算法。
3.
The model of minimum spanning tree with multiple parameter is established.
建立了多参数最小支撑树问题 (RMST)的模型 ,并证明该问题是 NP-完全的。
6) minimal spanning tree
最小支撑树
1.
This paper narrated and proved an minimal spanning tree algorithm which requires no consideration of circles.
从树的等价定义出发,叙述并证明了一种不必考虑圈的求最小支撑树的算法。
补充资料:变量与变量值
可变的数量标志和所有的统计指标称作变量。变量的数值表现称作
变量值,即标志值或指标值。变量与变量值不能误用。
变量值,即标志值或指标值。变量与变量值不能误用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条