2) changing profile of gray scale image
灰度分布图变换
3) image scale transform
图像尺度变换
4) gray image
灰度图像
1.
Approach to the algorithm of gray image edge detection in different illuminati on conditions;
3种光照条件下灰度图像边缘检测算法的研究
2.
A gray image representation algorithm by using the direct triangle and rectangle non-symmetry and anti-packing model;
直接三角形和矩形NAM的灰度图像表示算法
3.
The Conversion Program Design Of Color Images And Gray Image;
彩色图像与灰度图像间转换的程序设计
5) gray-level image
灰度图像
1.
The gray-level image of solid woven fabrics is captured by a color scanner and converted into digital files,then enhanced images are obtained by a gray-level morphological operation.
用彩色扫描仪输入紧密织物组织的灰度图像并将其转换为数字文件,然后通过灰度图像形态学处理获得增强图像。
2.
With visual frequency sensitivity,gray scale enhancement,Just Noticeable Distortion(JND) on gray-level image,this arithmetic selects DCT-block to compress watermarking image and make automorphic disorder,then embeds watermarking.
该算法采用视觉频率、图像灰度增强和灰度图像门限值JND量化选取DCT子块系数,对嵌入宿主图像的较大分辨率256级灰度水印先行压缩和自同构置乱,再行嵌入宿主图像。
补充资料:图像变换
为了用正交函数或正交矩阵表示图像而对原图像所作的二维线性可逆变换。一般称原始图像为空间域图像,称变换后的图像为转换域图像,转换域图像可反变换为空间域图像。图像处理中所用的变换都是酉变换,即变换核满足正交条件的变换。经过酉变换后的图像往往更有利于特征抽取、增强、压缩和图像编码。
实现图像变换的手段有数字和光学两种形式,它们分别对应二维离散和连续函数运算。数字变换在计算机中进行,提高运算速度是这种方式的关键。常用的有三种变换方法。①傅里叶变换:它是应用最广泛和最重要的变换。它的变换核是复指数函数,转换域图像是原空间域图像的二维频谱,其"直流"项与原图像亮度的平均值成比例,高频项表征图像中边缘变化的强度和方向。为了提高运算速度,计算机中多采用傅里叶快速算法。②沃尔什-阿达玛变换:它是一种便于运算的变换。变换核是值+1或-1的有序序列。这种变换只需要作加法或减法运算,不需要象傅里叶变换那样作复数乘法运算,所以能提高计算机的运算速度,减少存储容量。这种变换已有快速算法,能进一步提高运算速度。③离散卡夫纳-勒维变换:它是以图像的统计特性为基础的变换,又称霍特林变换或本征向量变换。变换核是样本图像的协方差矩阵的特征向量。这种变换用于图像压缩、滤波和特征抽取时在均方误差意义下是最优的。但在实际应用中往往不能获得真正协方差矩阵,所以不一定有最优效果。它的运算较复杂且没有统一的快速算法。除上述变换外,余弦变换、正弦变换、哈尔变换和斜变换也在图像处理中得到应用。
实现图像变换的手段有数字和光学两种形式,它们分别对应二维离散和连续函数运算。数字变换在计算机中进行,提高运算速度是这种方式的关键。常用的有三种变换方法。①傅里叶变换:它是应用最广泛和最重要的变换。它的变换核是复指数函数,转换域图像是原空间域图像的二维频谱,其"直流"项与原图像亮度的平均值成比例,高频项表征图像中边缘变化的强度和方向。为了提高运算速度,计算机中多采用傅里叶快速算法。②沃尔什-阿达玛变换:它是一种便于运算的变换。变换核是值+1或-1的有序序列。这种变换只需要作加法或减法运算,不需要象傅里叶变换那样作复数乘法运算,所以能提高计算机的运算速度,减少存储容量。这种变换已有快速算法,能进一步提高运算速度。③离散卡夫纳-勒维变换:它是以图像的统计特性为基础的变换,又称霍特林变换或本征向量变换。变换核是样本图像的协方差矩阵的特征向量。这种变换用于图像压缩、滤波和特征抽取时在均方误差意义下是最优的。但在实际应用中往往不能获得真正协方差矩阵,所以不一定有最优效果。它的运算较复杂且没有统一的快速算法。除上述变换外,余弦变换、正弦变换、哈尔变换和斜变换也在图像处理中得到应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条