1) real-time image segmentation
实时图像分割
2) image division
图像分割
1.
Snake model in carcinoma cell image division application;
Snake模型在癌细胞图像分割中的应用
2.
One important step for detecting quantified information from image of full hole microresistivity scan imaging log (FMI) is division of FMI image so that sub image mainly reflecting fracture and pore can be detected from raw FMI image, whether the effectiveness of image division directly related to accuracy of calculating FMI parameters.
图像分割效果的好坏直接关系到 FMI资料参数计算的准确性。
3.
The particular contents and familiar image division methods were summarized,and the research contents and methods of computer vision technique were also introduced.
图像分割是图像处理与计算机视觉的基本问题之一 ,本文就图像分割的具体内容及常见的图像分割方法进行了综述。
3) image segmentation
图像分割
1.
Feature extraction based on image segmentation of coal flotation froth;
煤泥浮选泡沫图像分割与特征提取
2.
Fabric image segmentation algorithm based on Mean Shift;
基于Mean Shift的织物图像分割算法
3.
Improved OTSU method on welding seam image segmentation;
采用改进OTSU法的焊前焊缝图像分割
4) Segmentation
[英][,seɡmən'teiʃən] [美][,sɛɡmən'teʃən, -mɛn-]
图像分割
1.
A Novel Validation Method Based on Radial Distance Error for 3D Medical Image Segmentation;
基于射线距离误差的三维医学图像分割的新型评价方法
2.
Fuzzy Markov random filed model and a new algorithm for image segmentation;
模糊马尔可夫场模型与图像分割新算法
3.
Introduction of a segmentation method for images of thin-layer structures;
一种薄膜组织图像分割算法的介绍
5) image segment
图像分割
1.
Image Segment Based on the Self-adaptive Threshold EM and GMM Algorithm
基于EM和GMM相结合的自适应灰度图像分割算法
2.
In this paper,we discuss image fusion methods within the space domain,transform domain and intelligence domain, where the emphasis is given to the fusion method based on image segment,wavelet transform,its extension,and semantic predication.
从空间域、变换域和智能域三个方面对医学图像融合的几种方法进行了阐述,具体讨论基于图像分割的融合方法、小波变 换及其扩展方法和语义谓词方法。
3.
Since many natural objects are similar to ellipse,so ellipse detection becomes one of the key techniques in image segment and object extraction.
椭圆检测是图像处理中常用的技术,由于自然界很多物体都可以用椭圆进行拟合,所以也成为图像分割和目标提取的关键技术。
6) image partition
图像分割
1.
But It is urgent to solve the important problem of the MMW radiometric image partition of metal targets for guidance application.
文中首先根据毫米波辐射特性确定不同亮温目标区域,然后利用形态学复合算法对辐射图像进行预处理,最后采用分水岭算法完成图像分割。
2.
This paper mainly introduces the method of increasing the signal of selecting target for the scanned image,by the way of image partition and object selection in PHOTOSHOP,it is increased efficiently for auto-vector in MAPGIS,and the method of applying the processed shading image in PHOTOSHOP to the edge of graph modify of MAPGIS is discussed in the paper.
主要介绍扫描图件在PHOTOSHOP中进行图像分割、对象选取,增强既定目标的信号,使扫描的图件在MAPGIS中能够方便、快捷地进行自动矢量化而提高工作效率,以及将PHOTOSHOP处理的底纹(图案)应用于MAPGIS的图边修饰中。
3.
The methods are put forward to pick up the edge of subminiature accessory by combining image partition algorithms with outline trace algorithms.
文中分析了边缘检测的一些典型算法在微小零件非接触测量中应用的优劣 ,提出了结合图像分割算法与轮廓跟踪算法提取微小零件边缘 ,并以实际图像为例比较了这些算法。
补充资料:图像分割
把图像分解为一些特定的性质相似的部分(区域或对象),并用这些部分对图像进行分析和描述。一幅图像往往包含许多不同类型的区域,如物体、环境和背景等。图像分析的一个重要方法就是用它们作为基本组成成分对图像进行描述。例如为了在气泡室图片中检出质点碰撞形式并判定其发生位置,就要在图像中分割出气泡的轨迹及其端点。为了从输入的文本中识别出一串字符,首先就要把各个字符从背景和其他字符中分离出来。因此把图像分割为若干子图像,并利用各子图像的特性和它们之间的关系描述图像,对于图像识别和解释、物景分析以及图像的分块处理和存储都有很大的意义。
图像分割基本上是对像素进行分类的过程。例如用某个灰度阈值把图像像素分成"黑"和"白"两类,就可以把黑的对象同白的背景区分开。常用的分割方法有灰度等级阈值法、谱和空间分类法、区域生长法和边缘检测法。
灰度等级阈值法 在图像只有两种组成部分的情况下,图像灰度的直方图常常呈现两个峰值。用两个峰值之间的谷值所对应的灰度作为阈值,把所有像素灰度大于或等于阈值的作为一类,小于阈值的作为另一类是一种最基本的两类分割方法。实际应用时为了改善分类的可靠性,可以利用某些附加的信息(例如已知两类区域的面积之比)使阈值的选择更加合理。在类别更多的情况下,可以采用多级阈值把各类分割开来(例如确定两个阈值,就可以把细胞图像分割为胞核、胞浆和背景三部分)。类别越多,图像直方图的峰值就越不明显,分割就更为困难。
谱和空间分类法 对于彩色和多光谱图像,可以用像素的几种性质(颜色和谱信号)对像素作比较精细的分类。对于黑白图像,用包括像素本身灰度在内的一组局部性质(例如该像素邻域灰级的均值)在多维空间中进行分类。对于一些复杂图像,这种方法比单独的灰度阈值法效果更好。
区域生长法 这是一种从图像中提取区域或实体的序贯分割法。根据灰度、纹理的均匀性、同背景的对比度以及区域、形状、尺寸等准则,把性质大致相同的邻近像素组合在一起以形成分割区域。
边缘检测法 用于获取图像内物体轮廓的分割方法。一般采用曲线拟合、轮廓跟踪或边缘点连接等技术求出物体的边界。此外,若对像素的类别给以某种概率度量或隶属度,则可以对像素反复进行分类,这就成为松弛迭代分割算法。这种算法有较好的效果,在图像分析中已得到广泛应用。
图像分割基本上是对像素进行分类的过程。例如用某个灰度阈值把图像像素分成"黑"和"白"两类,就可以把黑的对象同白的背景区分开。常用的分割方法有灰度等级阈值法、谱和空间分类法、区域生长法和边缘检测法。
灰度等级阈值法 在图像只有两种组成部分的情况下,图像灰度的直方图常常呈现两个峰值。用两个峰值之间的谷值所对应的灰度作为阈值,把所有像素灰度大于或等于阈值的作为一类,小于阈值的作为另一类是一种最基本的两类分割方法。实际应用时为了改善分类的可靠性,可以利用某些附加的信息(例如已知两类区域的面积之比)使阈值的选择更加合理。在类别更多的情况下,可以采用多级阈值把各类分割开来(例如确定两个阈值,就可以把细胞图像分割为胞核、胞浆和背景三部分)。类别越多,图像直方图的峰值就越不明显,分割就更为困难。
谱和空间分类法 对于彩色和多光谱图像,可以用像素的几种性质(颜色和谱信号)对像素作比较精细的分类。对于黑白图像,用包括像素本身灰度在内的一组局部性质(例如该像素邻域灰级的均值)在多维空间中进行分类。对于一些复杂图像,这种方法比单独的灰度阈值法效果更好。
区域生长法 这是一种从图像中提取区域或实体的序贯分割法。根据灰度、纹理的均匀性、同背景的对比度以及区域、形状、尺寸等准则,把性质大致相同的邻近像素组合在一起以形成分割区域。
边缘检测法 用于获取图像内物体轮廓的分割方法。一般采用曲线拟合、轮廓跟踪或边缘点连接等技术求出物体的边界。此外,若对像素的类别给以某种概率度量或隶属度,则可以对像素反复进行分类,这就成为松弛迭代分割算法。这种算法有较好的效果,在图像分析中已得到广泛应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条