1) quintic B-spline
五次B样条
1.
Therefore the uniformly-divided piece-wise quintic B-spline function after being subdivided and extended was obtained.
重构细分划了时域,细分划拓展了0次B样条Bi0的定义,对高次B样条的递推式进行了拓展,获得了细分划拓展的均匀分划的分段式五次B样条函数,因而拓展了展开定理,构造了五次B样条基函数。
2.
The discrete points on the boundary curve are interpolated by quintic B-spline.
该算法首先对由实物测量数据建立的三角网格模型进行预处理,即去除模型中所存在的一些缺陷,以提取模型边界轮廓曲线;然后对碎片的边界轮廓离散点进行五次B样条插值,同时计算轮廓曲线上各个点的曲率、挠率和法矢,并据此分析3维碎片轮廓曲线的几何特性;接着根据轮廓曲线上各个点的总曲率来检测轮廓的特征点,并对轮廓进行分段;最后根据曲率、挠率的变化对不同轮廓上的特征段进行相似性度量,并运用法矢对相似性程度较高的轮廓段进行可匹配性验证,同时计算出可匹配轮廓段的坐标转换关系,以实现碎片的拼合。
2) quintic spline
五次样条
3) cubic B-spline
三次B样条
1.
Adaptive Cubic B-Spline Approximation on Curve and Surface Reconstruction;
曲线曲面重建中的三次B样条自适应逼近算法
2.
Based on univariate cubic B-spline interpolation,a new algorithm to solve one dimensional search problem and the numerical results are presented in this paper.
基于一元三次B样条函数插值,给出了一种求解一维搜索问题的新算法和数值实验结果。
3.
The algorithm is relatively simple and efficient by adopting the cubic B-spline to design a smoothing filter.
采用三次B样条小波设计的平滑滤波窗算子,实现相对简单、效率较高。
4) hierarchical B-spline
层次B样条
1.
This paper presents a freeform feature reuse method based on hierarchical B-spline technique.
借助层次B样条技术提出了一种自由形状特征的重用算法。
2.
Finally,the local fine registration of thorax multimodal medical images is realized by a Free-Form Deformation(FFD) based on hierarchical B-splines.
为了实现胸部多模态医学图像的自动配准,提出了一种基于层次B样条自适应自由变形的快速配准方法。
3.
Finally,realized the local fine registration of thorax multimodal medical images by a free-form deformation(FFD) based on hierarchical B-splines.
为了实现胸部多模态医学图像的自动配准,提出了一种基于层次B样条自适应自由变形法和梯度下降法的配准方法。
5) even order B-spline
偶次B样条
1.
In the expansion theorem of uniformly-divided B-spline,odd order B-spline is expanded on integer point,while even order B-spline has not been demonstrated how to expand.
在均匀分划的B样条展开定理中,奇次B样条以整数点展开,而对偶次B样条将如何展开,展开定理并未说明。
6) quadratic B-spline
二次B样条
1.
In this paper, with the Kronecker product of the quadratic B-spline as the base of the element subspace, tacking advantage of the isoparametric transformation under the generalized coordinate, and following the traditional displacement F.
以分段二次B样条函数的Kronecker乘积为基底 ,构造有限元子空间。
补充资料:三次样条插值法
分子式:
CAS号:
性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。
CAS号:
性质:样条函数中最重要的一种函数。若函数S(x)在区间[a,b]的每一分段[xi-1,xi](i=s,2,…n)上是三次多项式,而整条曲线及其斜率是连续的,便称它是定义在区间[a,b]上的三次样条函数(cubic spline function)。利用拟合的多项式计算函数值,将计算的函数值插入到原有的实验点之间,然后再根据所有实验点拟合成曲线。用三次样条插值法获得的曲线具有很高的精度。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条