1) Runge-Kutta algorithm
龙格-库塔算法
1.
Based on MNLS,by using the method of variational principle,the influence of fifth-order nonlinearity on the propagation of soliton-like pulses in fiber is investigated,the evolution equations for the parameters are deduced,the relations between width and distance, chirp and width,are calculated and the evolution equations for frequency and phase are studied by using Runge-Kutta algorithm.
根据含五阶非线性微扰修正项的非线性薛定谔方程,采用变分法,导出了光纤中类明孤子各参数随传输距离演化的方程组,研究了脉宽与距离、啁啾与脉宽之间的关系,并对描述相位和频率的方程组用龙格-库塔算法进行了数值求解。
2.
Based on modified nonlinear Schr(?)dinger equation,the differential equations for evolution of parameters of bright-soliton-like pulses in optical fibers were derived by using variational method,and the differential equations were numerically solved by Runge-Kutta algorithm.
根据含三阶色散微扰修正项的非线性薛定谔方程,采用变分法,导出了三阶色散效应作用下光纤中具有初始啁啾的类明孤子各参数随距离演化的微分方程组,并用龙格-库塔算法对微分方程组进行了数值求解,数值结果表明:正三阶色散使脉宽展宽,负三阶色散使脉宽压缩,而初始啁啾总是使脉宽展宽,它们都导致相位与频率的抖动和更为严重的频率啁啾。
2) Runge-Kutta
龙格-库塔法
1.
A Simple Application of Runge-kutta in Fuzzy Control;
龙格-库塔法在模糊控制中的优化应用
2.
The Improvement of the Variational Step Method Based on Runge-Kutta;
基于龙格-库塔法的变步长策略改进
3.
The 4th order Runge-Kutta and differential approaches combined with spline or polynomial fit were used to work out these parameters, and the effects of deviation and amount of experimental data on the calculated results were analyzed in detail.
阐述了四阶龙格-库塔法、样条插值和多项式拟合的微分法等,求解动力学参数的原理和步骤。
3) Runge-Kutta method
龙格-库塔法
1.
How to use Runge-Kutta method to resolve second-order ordinary differential equation of electrochemistry is presented with the source code of Visual Basic 6.
该文采用龙格-库塔法求解,给出了模拟电化学二阶线性常微分方程求解方法及VB 6。
2.
Four-order-Runge-Kutta method is used to compute the differential equations.
该软件中对微分方程组的求解采用四阶龙格-库塔法。
3.
In order to research the factors which influence the sliding behavior of active fault,the single degree freedom of springblock model and the rate-state dependent friction law are introduced,the static force equation of spring-block is built,and the Runge-Kutta method is used to solve the nonlinear equations.
为进一步探索活动断层滑动性质及断层系统演化过程的影响因素,基于单自由度弹簧-滑块模型,引入速率-状态依赖摩擦本构关系,建立了单自由度弹簧-滑块系统的静力平衡方程,采用龙格-库塔法解非线性方程组,重点研究了滑动速率及系统刚度对断层滑动性质、系统演化过程的影响。
4) Runge-Kutta
龙格库塔法
1.
The characteristic method and the classical Runge-Kutta method were adopted for simulation.
计算方法采用带内插的特征线方法和四阶龙格库塔法。
5) Runge-Kutta Method
龙格库塔法
1.
The difference of Runge-Kutta method, the method of multiple scales, the first method of interpolate perturbation, the.
分析了龙格库塔法、多尺度法、插值摄动第一法、插值摄动第二法等4种方法在计算一类非线性振动问题时的差异,给出了每一种方法对应的时程图和相位图,编写了每种方法的Matlab程序。
6) Runge kutta
龙格-库塔法
1.
In this paper the author uses Runge kutta method to solve the problem.
本文对此方程组采用四阶龙格-库塔法进行数值分析,得到了较好的数值结果。
补充资料:龙格-库塔法
见常微分方程初值问题数值解法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条