1) ultra-fuzzy sets
超模糊集
1.
A new thresholding using multi-properties based on ultra-fuzzy sets was proposed (F2ES),which processed optimal threshold as comprehensive assessment function constructed by fuzzy entropy and fuzzy similarity based on ultra-fuzzy sets.
针对这些问题,介绍了一种基于超模糊集合理论的多属性图像阈值分割方法(F2ES),在超模糊集的基础上,结合模糊熵和模糊相似性两种截然不同的属性刻画待分割图像,构造综合评价函数,得到最佳阈值。
2) hyper-cubic fuzzy subset
超立方体模糊子集
1.
The proposed scheme includes three steps, that is, the expansion of hyper-cubic fuzzy subsets、the judgement of overlap between hyper-cubic fuzzy subsets and the eliminati.
这种新的检测方案主要步骤包含:超立方体模糊子集的扩充、超立方体模糊子集间交叠程度判断和消除交叠等。
3) fuzzy set-valued fuzzy set
模糊集值模糊集
1.
A approximate reasoning scheme based on fuzzy set-valued fuzzy sets is proposed, where fuzzy production rules are used for knowledge representation in ARSFSISO, and the fuzzy states appearing in the fuzzy production rules are represented by fuzzy set-valued fuzzy sets.
通过在单输入单输出(SISO)的近似推理方案(ARS)中,用模糊产生式规则表示知 识、以模糊集值模糊集刻划模糊产生式规则中出现的模糊状态,提出了一个基于模糊集值 模糊集的近似推理框架;从而使单输入单输出的近似推理方案(ARSFSISO)的推理能力 得以增
4) fuzzy ultraproduct
模糊超积
1.
This paper is devoted to the ultraproduct BCK-algebras and the fuzzy ultraproduct of fuzzy subsets of BCK-algebras were proposed by using the concept of ultrafilters with the corresponding properties of fuzzy ideals discussed.
通过使用超滤子的概念以及所讨论的模糊理想的相应性质,提出了超积BCK-代数和BCK-代数模糊子集的模糊超积。
6) fuzzy set
模糊集
1.
A wrong theorem inferred from fuzzy set theory;
模糊集理论推出的一个错误定理
2.
Synthetic evaluation method on assembly-possibility of products based on entropy weight and fuzzy set;
基于熵权与模糊集的产品可装配性综合评价方法
3.
A fuzzy set-based trust and reputation model for P2P networks;
对等网络中基于模糊集的信任和声望模型
补充资料:模糊集
论域X={x}上的模糊集峎是指x中由隶属函数表征的元素全体,在实轴的闭区间[0,1]中取值,的大小反映 x对模糊集 A的从属程度。所讨论的全体对象组成的普通集合称为论域或空间。普通集合 X的元素是分明的,即对于任何元素只存在属于或不属X这两种情况,二者必居其一,而只有X的子集峎 才是模糊的。所以模糊集合通常是指模糊子集。L.A.扎德于1965年首先提出模糊集的概念。他指出,人思维的一个重要特点是按模糊集的概念归纳信息。随着计算机技术的发展,人们求解复杂问题的能力越来越强。在建立复杂问题的数学模型时,不可避免地要涉及事物的不确定性。不确定性包括随机性和模糊性。随机性是指事件发生与否的不确定性,已由概率论完善地加以研究。模糊性则指事物本身从属概念的不确定性。模糊集的概念一经提出,便在理论和应用两个方面得到迅速发展。模糊集理论已应用到系统科学、自动控制、信息处理、人工智能、模式识别、医疗诊断、天气预报、地震研究、农作物选种、体育训练、化合物分类以及经济学、心理学、社会学、语言学、生态学、管理学、法学和哲学等广泛领域。
隶属函数 设论域X={x},则映射
?
?确定X上的一个模糊子集峎,称为峎 的隶属函数,数称为x0对峎 的隶属度。
模糊子集峎完全由其隶属函数所刻划。接近1,表示x从属于峎 的程度很高;接近0,表示x从属于峎 的程度很低。特别当的值仅取闭区间的两个端值{0,1}时,模糊子集峎 便退化成为X 的一个普通子集。因此,模糊集是普通集合概念的推广。
基本运算 两个模糊子集之间的运算实际上就是逐点对隶属度作相应的运算。其基本运算可定义如下:
①等价关系:两个模糊集峎和是等价的,记为峎呏,是指当且仅当对任何x ∈X,成立。
②包含关系:模糊集峎包含于模糊集中,或称峎是的子集,记为峎 嶅,是指当且仅当对任何x ∈X,成立。
③补集:模糊集峍 是峎 的补集,是指当且仅当对任何x ∈X,成立。
④并集:两个模糊集峎 和的并集记为峎∪,定义为包含峎 和的最小模糊集。峎 ∪的隶属函数定义为,常简写。
⑤交集:两个模糊集峎和的交集峎∩定义为同是这两个集合的子集的最大模糊集。峎∩的隶属函数定义为,常简写成。
λ水平截集 它是模糊集与普通集合相互转化的一个重要概念。λ水平截集的定义为:设给定模糊集峎,对任意阈值λ∈[0,1],称普通集合
为峎 的λ水平截集。取模糊集峎 的λ水平截集Aλ,就是将隶属函数转化为特征函数:
分解定理 设峎是论域X 的一个模糊子集,Aλ是峎 的λ水平截集,λ∈[0,1],则下列分解式成立:
这里∪为并集运算符号,λAλ表示X的一个模糊子集,称为λ与Aλ的积,其隶属函数为:
分解定理也可以写成隶属函数的形式。分解定理把模糊集的问题化为普通集合论的问题来解,应用分解定理可把许多在普通集合论中成立的基本等式推广到模糊集中去。
扩展原理 设给定映射f:X →Y,则可把它扩展为映射愝:峎 →f(峎)。这里愝称为f的扩展,可简记为f。扩展原理可解释为峎 经过映射f后,其隶属函数可以无保留地传递过去,即经过映射后模糊子集峎 和f(峎)的论域X和Y中的相应元素的隶属度保持不变。若不是单值映射,则规定象的隶属度取最大值。扩展原理是扎德于1975年首先引入的,可作为公理使用。它把普通集合论的方法扩展到模糊集中去。分解定理和扩展原理是模糊集理论的基础。
参考书目
A.Kaufman, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York,1975.
隶属函数 设论域X={x},则映射
?
?确定X上的一个模糊子集峎,称为峎 的隶属函数,数称为x0对峎 的隶属度。
模糊子集峎完全由其隶属函数所刻划。接近1,表示x从属于峎 的程度很高;接近0,表示x从属于峎 的程度很低。特别当的值仅取闭区间的两个端值{0,1}时,模糊子集峎 便退化成为X 的一个普通子集。因此,模糊集是普通集合概念的推广。
基本运算 两个模糊子集之间的运算实际上就是逐点对隶属度作相应的运算。其基本运算可定义如下:
①等价关系:两个模糊集峎和是等价的,记为峎呏,是指当且仅当对任何x ∈X,成立。
②包含关系:模糊集峎包含于模糊集中,或称峎是的子集,记为峎 嶅,是指当且仅当对任何x ∈X,成立。
③补集:模糊集峍 是峎 的补集,是指当且仅当对任何x ∈X,成立。
④并集:两个模糊集峎 和的并集记为峎∪,定义为包含峎 和的最小模糊集。峎 ∪的隶属函数定义为,常简写。
⑤交集:两个模糊集峎和的交集峎∩定义为同是这两个集合的子集的最大模糊集。峎∩的隶属函数定义为,常简写成。
λ水平截集 它是模糊集与普通集合相互转化的一个重要概念。λ水平截集的定义为:设给定模糊集峎,对任意阈值λ∈[0,1],称普通集合
为峎 的λ水平截集。取模糊集峎 的λ水平截集Aλ,就是将隶属函数转化为特征函数:
分解定理 设峎是论域X 的一个模糊子集,Aλ是峎 的λ水平截集,λ∈[0,1],则下列分解式成立:
这里∪为并集运算符号,λAλ表示X的一个模糊子集,称为λ与Aλ的积,其隶属函数为:
分解定理也可以写成隶属函数的形式。分解定理把模糊集的问题化为普通集合论的问题来解,应用分解定理可把许多在普通集合论中成立的基本等式推广到模糊集中去。
扩展原理 设给定映射f:X →Y,则可把它扩展为映射愝:峎 →f(峎)。这里愝称为f的扩展,可简记为f。扩展原理可解释为峎 经过映射f后,其隶属函数可以无保留地传递过去,即经过映射后模糊子集峎 和f(峎)的论域X和Y中的相应元素的隶属度保持不变。若不是单值映射,则规定象的隶属度取最大值。扩展原理是扎德于1975年首先引入的,可作为公理使用。它把普通集合论的方法扩展到模糊集中去。分解定理和扩展原理是模糊集理论的基础。
参考书目
A.Kaufman, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条