1) regular trinomial pairs
正则三项式对
1.
The trinomial property of d-form sequences was discussed,then using the property of d-form functions and finite fields,d-form sequences having the regular trinomial pairs was proved,and the result given by Chao Li and Panpan Xiang can be seen as a special case.
讨论了d-型序列的三项式特性,利用d-型函数和有限域的性质,证明了d-型序列具有正则三项式对,李超、项攀攀所得的结果可以看作是一个特例。
2) trinomial pair
三项式对
1.
We study the trinomial property of pm-adic periodic sequences and generalize the results in[1], also we give an effective algorithm to search all the trinomial pairs of a given sequence,and thus solve all the problems associated with trinomial property completely.
研究了pm元周期序列的“三项式特性”,推广了文献[1]中的结论,并首次给出了求解给定序列的所有“三项式对”的有效算法,从而完美地解决了序列的“三项式特性”的相关问题。
3) regular polynomial
正则多项式
4) regular polynomial matrix
正则多项式矩阵
5) regularization term
正则化项
6) regularization item
正则项
1.
But in the current methods,regularization item of the energy function smoothes the interior domain and keeps the boundaries discontinuity of disparity map according to the gradient field of image,and it leads the finial dense disparity map retain much traces of image edge in the smooth area.
而现有方法中能量函数的正则项都依照图像梯度场对初始视差图内部进行平滑并保持边缘的不连续性,这导致了最终获取的密集视差图的平滑区域具有较多的图像边界残留痕迹。
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条