1) Hyponormality
亚正规性
1.
Subnormality and Hyponormality of Weighted Shifts Operators;
加权移位算子的次正规性及可亚正规性
2.
This paper concerns the hyponormality of Toeplitz operator Tφ, on the Hardy space H2 (NFDA2) of the unit circle NFDA2 in the complex plane, with the symbol φ∈L∈L∞ (NFDA2).
讨论了Hardy空间H2()上的Toeplitz算子Tφ的亚正规性质。
3.
Normality、Subnormality and Hyponormality of Toeplitz Operators and Products of Toeplitz Operators;
本文首先对关于Toeplitz算子的正规性、次正规性和亚正规性的研究做了一个总结。
2) k-hyponormality
k-亚正规性
3) The Properties of Hyponormal Operators
亚正规算子的性质
4) subregular solution model
亚正规溶体
1.
A new method for phase equilibrium calculation has been proposed in subregular solution model based on the concept of equality of two-phase equilibrium criterion of both the effective chemical potential and the grand potential.
根据亚正规溶体模型,利用有效化学势及巨势相等的两相平衡条件,建立一种二元合金相平衡计算的新方法,与求自由能极小值的最优化方法相比,此法计算简单,不存在任何收敛性问題。
5) hyponormal operator
亚正规算子
1.
An upper bound is obtained for the distance between two hyponormal operators in terms of the distance between their spectra.
利用算子的谱给出两个亚正规算子间距离上限的刻画,并对亚正规算子A,得出inf‖A-λI‖=‖A‖λ∈C当且仅当∩ U(x,‖A‖)={0} x∈σ(A),其中U(x,‖A‖)={z∈C;|z-x|≤‖A‖}。
2.
Firstly,The relation between the quasi-normal and hyponormal operators is investigated.
讨论算子的拟正规性与亚正规性的关系,并以单侧加权移位算子为例证明了并非所有的亚正规算子是拟正规的。
6) formally hyponomal operators
形式亚正规
补充资料:连续性与非连续性(见间断性与不间断性)
连续性与非连续性(见间断性与不间断性)
continuity and discontinuity
11an父ux泊g四f“山。麻以角g、.连续性与非连续性(c。nt,n琳t:nuity一)_见间断性与不间断性。and diseo红ti-
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条