2) differential iteration scheme
微分迭代法
1.
Ink transfer equation parameters are assigned by differential iteration scheme.
本文利用微分迭代法,对油墨转移方程参数赋值。
3) iterative differential equation
迭代微分方程
1.
In this paper,we investigate a class of iterative differential equation.
研究了一类迭代微分方程解的存在性与唯一性问题,给出了存在唯一性定理,推广了已有的结果。
2.
The paper is concerned with an iterative differential equation.
讨论了一阶迭代微分方程解析解的存在性,通过构造一个辅助方程的幂级数解给出该方程的解析解。
3.
A Picard type existence and unigueness theorem is established for iterative differential equations of the form y′(x)=f(x,y(y(x))).
给出一类迭代微分方程的Picard型的存在唯一性定理。
4) differential-iterative equation
迭代微分方程
1.
The existence of T-periodic solutions for the second order differential-iterative equation +g(x(x))=p(t) is studied, where g and p are continuous, p(t+T)=p(t),∫ T 0p(t)dt=0.
研究二阶迭代微分方程 x+g(x(x) ) =p(t) T-周期解的存在性 ,其中 g,p均连续 ,p(t+T) =p(t) ,且∫T0p (t) dt=0 。
5) differential iterative equation
迭代微分方程
1.
To investigate the existence and the behavior of the periodic solutions to a type of differential iterative equation.
利用 Schauder不动点定理和直接分析的方法研究一类迭代微分方程在一定条件下周期解的存在性及解的性态 ,并在合理的条件下 ,获得了一类迭代微分方程周期解的存在性结果和解的单调性
2.
Aim To study the conditions for the existence of periodic solutions of a type of differential iterative equation.
目的研究迭代微分方程存在周期解的条件。
3.
The solution of the differential iterative equation is studied with the given condition of H,according to the fixed point principle of Schauder.
在给定条件 ( H)下 ,研究迭代微分方程解的存在性 ,所用方法为利用 Schauder不动点原理 ,其结果建立了多次迭代微分方程存在周期解的结
6) differential-iterative equation
微分迭代方程
1.
Conditions for the uniqueness of solutions to the differential-iterative equations x (t)=f(x(x(t))) are given by use of fixed point theorems.
给出了微分迭代方程x’(t)=f(x(x(t)))解唯一条件,所用方法是应用Schauder不动点定理。
2.
The existence and the behavior of solutions to the differential-iterative equation arestudied without the restriction that f is monotone An error in and available paper is correctedhere.
:在对f不作单调要求的情况下,研究了微分迭代方程解的存在性和性态,对现有文献中的错漏作了更正。
补充资料:层层迭迭
1.见"层层迭迭"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条