2) sequential minimization optimization algorithm
贯序最小优化算法
3) sequential minimal optimization
序贯最小优化
1.
After the analysis of the difficulties in training SVM and a survey of some popular methods and their relationship, sequential minimal optimization (SMO) and its improved versions are discussed in detail.
该文从分析SVM训练问题的实质和难点出发,结合目前一些主要的SVM训练方法及它们之间的联系,重点阐述当前最有代表性的一种算法——序贯最小优化(SMO)算法及其改进算法。
2.
At present sequential minimal optimization (SMO) algorithm is a quite efficient method for training large-scale support vector machines (SVM).
序贯最小优化(sequential minimal optimization,简称SMO)算法是目前解决大量数据下支持向量机(support vector machine,简称SVM)训练问题的一种十分有效的方法,但是确定工作集的可行方向策略会降低缓存的效率。
3.
Working set selection is an important step in the sequential minimal optimization (SMO) type methods for training support vector machine (SVM).
针对标准序贯最小优化(sequential minimal optimization,SMO)算法采用可行方向工作集选择策略所带来的缓存命中率低下问题,给出了SMO类型算法每次迭代所带来的目标函数下降量的二阶表达式,并据此提出了一种改进的工作集选择策略。
4) Sequential Minimal Optimization(SMO)
序贯最小优化
1.
When Keerthi s Sequential Minimal Optimization(SMO) algorithm is applied to the classification of unbalanced datasets,it not only leads to a poor classification performance but makes the result unstable.
为了解决Keerthi改进的序贯最小优化(SMO)算法在处理非平衡数据集时,整体分类性能较低、稳定性差等问题,对两个类别施加不同的惩罚系数的方法对算法作进一步改进,同时给出计算公式及算法步骤。
2.
The algorithm searched for the optimal distribution of support vectors unlike the sequential minimal optimization(SMO) algorithm focusing on the convergence of object function.
不同于序贯最小优化(SMO)收敛目标函数的思路,该算法寻找支持向量在最优状态下的分布,对Karush-Kuhn-Tucker(KKT)条件不敏感,并可获得解析的最优值。
5) Sequential minimal optimization
序列最小最优化算法
6) sequential optimization algorithm
序贯优化算法
1.
An adaptive sequential optimization algorithm based on the Kriging surrogate model is proposed in this paper.
提出了一种基于Kriging代理模型的自适应序贯优化算法。
补充资料:计算算法的最优化
计算算法的最优化
ptimization of computational algorifans
计算算法的最优化【。洲咧匕6阅ofc咖例。柱.目习子时-d,”6;onT一Mo3a双,Ra,一eju.Teju.II.叱a几r0P盆n陇o,1 在求解应用问题或精心设计标准程序系统时最优计算算法(comPutatio几al algorithm)的选择.当解决一个具体间题时,最优策略可能不会使解法最优化,可是为优化一个标准程序或应用最简单的解法编制程序则是很直截了当的. 计算算法的最优化问题的理论提法是基于下述原则.当选择一种方法来求解一个问题时,研究人员关心的是某些特性,而且根据这些特性来选择算法,同时这个算法也能用来解决具有这些特性的其他问题.据此,在算法的理论研究中,人们引人了具有特殊性质的一类问题尸.当选择一种解法时,研究人员有一组解法M可供选用.当选用一种方法m来求解一个问题p时,得到的解会有一定的误差e(p,m).称量 E(P,m)=sllp}。(p,m)I P‘P为在这类问题P中方法m的误差(en刀r of the nrth-od),同时,称量 E(p,M)一惑E(p,m)为M中方法在尸中误差的最优估计(。Ptimal estirnateof the error).如果存在一种方法,使得 E(P,m。)=E(P,M),那么称这个方法为最优的(optirnal).研究计算算法最优化问题的一个方案可以追溯到A .H .KQJLMoropoB(【2」),所考虑的是计算积分 1 ‘(f)一Jf(x)dx 0问题的集合,给定的条件是}f(时}成A,其中M是所有可能求积 N ‘(f)澎,万:C,f(x,)的集合·每一种求积由总数为ZN的cj和礼确定.由具有所需精度的某函数类重新生成一个函数所需要的最小信息量(见【2],「31)也可以包含在这个方案中.这个问题的一个更详细的阐述可查阅【4],它指出在特定意义下实现算法的工作量与应用的存储量同样大.最优算法仅对极少数类型问题存在(汇1」),然而,对大量计算问题,已经建立了就其渐近特性而言几乎是最优的方法(见汇5]一【8」). 对某类问题最优的计算算法特性的研究工作(见15],【71)包含两部分:建立其特性尽可能好的具体解法,和根据计算算法的特性得出估计量(见【2]一【4],【9】).实质上,问题的第一部分是数值方法理论的一个基本问题,而且在大多数情况下它是与最优化问题无关的研究工作.下面得到的估计通常归结为对£摘(。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条