1) global convexity
全局凸
1.
In this paper the authors analyze the shape features like singularities,inflection points and local or global convexity of rational C-Bézier curve,then give the necessary and sufficient conditions for this curve having one or two inflection points,or a loop,or a cusp,or being local or global convex in terms of the relative position of its control polygons′ side vectors.
对有理C-Bézier曲线进行了形状分析,得出曲线上含有奇点、拐点和曲线为局部凸或全局凸的、用控制多边形边向量相对位置表示的充分必要条件,并讨论了权因子变化对曲线形状图的影响。
2.
Through the definition for global convexity and local convexity of parameter curves,this paper studies the relations between convexity of Bézier curve and its characteristic polygon,and produces a theorem on the global convexity and another on local convexity of Bézier curves.
通过参数曲线全局凸和局部凸的定义,研究了Bézier曲线的凸性与其特征多边形的关系,并给出了Bézier曲线的全局凸性和局部凸性定理。
2) global closed convex surface
全局闭凸曲面
3) Global Closed Convex Curve
全局闭凸曲线
4) locally full k convexity
局部完全k凸
5) local full k-rotundity
局部完全k-凸
6) CLwR spaces
紧局部完全w凸
1.
In this paper,the lifting problems in the sequence spaces l~p(E_i) and ces_p(E) are discussed,and it is proved that: (1) Geometric property (C-K)(K=Ⅰ,Ⅱ ,Ⅲ)can be lifted to sequence spaces (l~p(E_i)) and ces_p(E), (2) One necessary and sufficient condition for sequence spaces ces_p(E) to be CLwR spaces (resp.
讨论了(C-K)(K=Ⅰ,Ⅱ,Ⅲ)性质在两类序列空间lp(Ei)和cesp(E)中的提升问题,证明了(C-K)(K=Ⅰ,Ⅱ,Ⅲ)性质可以提升到lp(Ei)和cesp(E),并给出了cesp(E)(1
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条