1) underground communication
地下通信
1.
The applied theory and circs of low-frequency in submarine communication,underground communication,measurement while drilling,resources exploration of earth and ocean,earthquake monitoring,and so on are discussed.
1Hz~30 kHz频段电波特性和传播方式进行研究,结合对潜通信、无线电物理和大地电磁探测等专业技术的特点,论述低频段在对潜通信、地下通信、电磁波随钻测量、地下和海洋资源探测、地震监测等领域的应用原理和应用情况,促进该频段在更多领域的应用。
2) underground radio communications
地下无线电通信
1.
Two difficult technical problems in underground radio communications, i.
文章叙述了在地下无线电通信中的两大技术难题———弱信号接收和抗雷电脉冲干扰 ,提出其解决途径 ,并介绍解决这些技术难题的关键设备———弱信号抗雷电电报终端机的设计方案 ,分析该机的性能和给出实验室测试和现场试验的结果。
4) subterranean communications optic fiber cable
地下通信光缆
5) underground communication pipe
地下通信管道
1.
This paper describes the necessity in the unified construction of underground communication pipeline.
阐述地下通信管道统一建设的必要性,通过中山市地下通信管道集约化建设过程中所遇见问题的分析,探讨解决问题的思路与方向。
6) underground communication
井下通信
1.
According to the limitation analysis of the field bus communication technology,this paper discusses the feasibility and necessity of introducing the industrial Ethernet technology to the underground communication for coal mine.
本文通过对现场总线通信技术的局限性分析,讨论了工业以太网技术引入煤矿井下通信的可行性和必然性,提出了工业以太网在煤矿井下通信中的典型应用。
补充资料:地下通信
发射机、接收机和天线全部设置在地下工事、隧道或矿井之内的无线电通信。
一种类型的地下通信是互不连通并且相隔一定距离的地下工事或隧道之间的通信。这种地下通信按电磁波传播途径可分为透过岩层、通过地下波导和"上-越-下"三种模式。
① 透过岩层模式:采用这种模式需要开凿几百米至一、两千米深的竖井,天线穿过高电导率的覆盖层,垂直伸入低电导率的岩层,让电磁波在低电导率的岩层中传播(图1a)。为了减少电磁波的衰减须使用较低的频率,一般用长波或甚长波。20世纪60年代初,美国曾对这种传播模式进行多次试验,当发射功率为一、两百瓦时,通信距离达几公里至几十公里。
② 地下波导模式:理论分析表明,若使用兆瓦极的大功率和更低的频率,并且岩层电导率约低于10-7 西/米,电磁波就可在覆盖层下缘与莫霍层(见地下电波传播)上缘间来回反射进行远距离传播(图1b)。这种传播模式称为地下波导模式,其通信距离可超过1000~2000公里。
上述两种模式的主要优点是:高电导率覆盖层有屏蔽作用,通信几乎不受外界天电、工业及其他电台干扰;传输条件不随外界变化,信号稳定可靠;通信隐蔽,保密性好。其主要缺点是:电磁波全在岩层中传播,衰减很大,要达到较远的通信距离,发射功率必须很大;使用的频率很低,故通信容量很小;需要开凿深井。
③ "上-越-下"模式:采用这种模式,天线应水平架设在地下。电磁波自天线辐射出来,首先向上穿出地层,经折射沿地面传播,到达接收地域后,再经折射向下透入地层到达接收天线(图2中a)。工作频率通常选在中波或长波波段。频率过高则电磁波衰减太大,频率过低则天线效率太低,并且天电干扰(见大气噪声)也太大,均不利于通信。使用小功率或中功率的发射机,通信距离可达十余公里或百余公里。若利用天波,通信距离可达数百公里(图2中b)。但是,此时宜工作于短波低频端,而且天线需要浅埋,埋深仅为1~2米。"上-越-下"模式的信号的稳定性、可靠性、隐蔽性,比透过岩层和地下波导两种模式的都要差。但它利用较小的功率就可以获得较远的通信距离,而且天线在隧道内架设方便,因此这种模式已进入实用阶段。在地下工事之间、导弹发射井与地下控制中心之间,有的已建立这种模式的通信系统。
另一种类型的地下通信是矿井或隧道内部的无线电通信。这种地下通信需要在隧道内架设漏泄电缆(见电信电缆),依靠电缆漏泄的电磁场和无线电台天线的耦合来进行通信。这种通信方式一般工作在甚高频或特高频频段。它可用于矿井内部流动人员、移动车辆的通信和地铁固定台站与列车之间的通信。此外,在铁路或公路隧道中运行的车辆需要接收无线电广播或与隧道外的台站进行通信时,也可采用这种方式,但需要在隧道口加设无线转接站,以便将隧道内的漏泄电缆和隧道外的无线信道联接起来。上述通信方式自70年代起已得到日益广泛的应用。在矿井内部还可利用中频、低频或甚低频无线电波,使之穿过岩层进行近距离的通信,或在矿井塌陷处发出告警信号,供地面测向定位以进行救生之用。
一种类型的地下通信是互不连通并且相隔一定距离的地下工事或隧道之间的通信。这种地下通信按电磁波传播途径可分为透过岩层、通过地下波导和"上-越-下"三种模式。
① 透过岩层模式:采用这种模式需要开凿几百米至一、两千米深的竖井,天线穿过高电导率的覆盖层,垂直伸入低电导率的岩层,让电磁波在低电导率的岩层中传播(图1a)。为了减少电磁波的衰减须使用较低的频率,一般用长波或甚长波。20世纪60年代初,美国曾对这种传播模式进行多次试验,当发射功率为一、两百瓦时,通信距离达几公里至几十公里。
② 地下波导模式:理论分析表明,若使用兆瓦极的大功率和更低的频率,并且岩层电导率约低于10-7 西/米,电磁波就可在覆盖层下缘与莫霍层(见地下电波传播)上缘间来回反射进行远距离传播(图1b)。这种传播模式称为地下波导模式,其通信距离可超过1000~2000公里。
上述两种模式的主要优点是:高电导率覆盖层有屏蔽作用,通信几乎不受外界天电、工业及其他电台干扰;传输条件不随外界变化,信号稳定可靠;通信隐蔽,保密性好。其主要缺点是:电磁波全在岩层中传播,衰减很大,要达到较远的通信距离,发射功率必须很大;使用的频率很低,故通信容量很小;需要开凿深井。
③ "上-越-下"模式:采用这种模式,天线应水平架设在地下。电磁波自天线辐射出来,首先向上穿出地层,经折射沿地面传播,到达接收地域后,再经折射向下透入地层到达接收天线(图2中a)。工作频率通常选在中波或长波波段。频率过高则电磁波衰减太大,频率过低则天线效率太低,并且天电干扰(见大气噪声)也太大,均不利于通信。使用小功率或中功率的发射机,通信距离可达十余公里或百余公里。若利用天波,通信距离可达数百公里(图2中b)。但是,此时宜工作于短波低频端,而且天线需要浅埋,埋深仅为1~2米。"上-越-下"模式的信号的稳定性、可靠性、隐蔽性,比透过岩层和地下波导两种模式的都要差。但它利用较小的功率就可以获得较远的通信距离,而且天线在隧道内架设方便,因此这种模式已进入实用阶段。在地下工事之间、导弹发射井与地下控制中心之间,有的已建立这种模式的通信系统。
另一种类型的地下通信是矿井或隧道内部的无线电通信。这种地下通信需要在隧道内架设漏泄电缆(见电信电缆),依靠电缆漏泄的电磁场和无线电台天线的耦合来进行通信。这种通信方式一般工作在甚高频或特高频频段。它可用于矿井内部流动人员、移动车辆的通信和地铁固定台站与列车之间的通信。此外,在铁路或公路隧道中运行的车辆需要接收无线电广播或与隧道外的台站进行通信时,也可采用这种方式,但需要在隧道口加设无线转接站,以便将隧道内的漏泄电缆和隧道外的无线信道联接起来。上述通信方式自70年代起已得到日益广泛的应用。在矿井内部还可利用中频、低频或甚低频无线电波,使之穿过岩层进行近距离的通信,或在矿井塌陷处发出告警信号,供地面测向定位以进行救生之用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条