说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 离散信号处理
1)  discrete signal processing
离散信号处理
2)  signal processing/discrete cosine transform
信号处理/离散余弦变换
3)  discrete random signal processing
离散随机信号处理
4)  discrete signal
离散信号
5)  signal processing
信号处理
1.
Modeling and simulating of CO_2 current signal processing based on MATLAB;
基于MATLAB的CO_2电流信号处理建模及仿真
2.
Study on signal processing in magnetic flux leakage detection of oil pipe;
输油管道漏磁检测信号处理研究
3.
Independent component analysis and its applications in chemical signal processing;
独立成分分析及其在化学信号处理中的应用
6)  signal process
信号处理
1.
Design of signal processor in passive radar seeker;
被动雷达导引头中信号处理器的设计
2.
Design of a Signal Processing Circuit for the Embedded Optical Fiber Displacement Sensor;
嵌入式光纤位移传感器信号处理电路的设计
3.
Signal process of the micro array accelerometer based on MAX1457;
基于MAX1457的加速度硅微传感器的信号处理
补充资料:离散随机信号处理
离散随机信号处理
discrete random signal processing

   利用数字运算,对离散随机信号进行各种滤波处理、离散变换和谱分析。随机信号是一种非确定性的信号,如热噪声信号发生器输出的电信号,飞行器起飞时的结构振动,以及起伏海面的波动高度等。它们的共同特点是无法预测其未来瞬间的精确值。处理的目的是便于从中提取有用的信息,削弱信号中的多余信息量,便于估计信号的特征参数,或变换成易于分析和识别的形式等。
   随机信号处理的主要理论基础是信号检测理论、估计理论和随机过程理论。根据理论分析,随机信号的不同样本函数在同一时刻的值往往是不确定的,因而只能用样本函数集的统计平均来描述,如用均值、均方值、方差、概率密度函数、相关函数和功率谱密度函数来描述随机过程的特性。但是,在大多数情况下,被处理的随机信号是具有各态历经的平稳随机过程,它的样本函数集平均可以用某一样本函数的时间平均来确定,这给随机信号的分析和处理带来很大方便。虽然平稳随机信号本身是不确定的,但它的相关函数是确定的,可以利用快速变换算法来计算。相关函数的傅里叶变换或Z变换表示随机信号的功率谱密度函数,简称为功率谱。功率谱是描述随机信号基本特征的重要参数,而功率谱估值是按照实际观测的有限数据估计得到的,它必然与真实的功率谱值有差别。为了减小谱分析偏差和提高谱分辨率,产生了多种谱估计方法。
   在非平稳随机信号处理中,非平稳随机过程的特征函数一般是随时间而变化的,不能再用时间平均代替集平均,只能用组成过程的样本函数集的瞬时平均来描述其特性。因而求得的功率谱是随时间变化的谱。这种时变功率谱的计算方法仍在研究中。卡尔曼滤波和最大熵法是处理非平稳随机信号的有用方法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条