1) Simulative support vector
拟支持向量
2) support vector machines
支持向量
1.
Application of support vector machines in examination of worn striation mark;
支持向量机方法在线条痕迹检验中的应用
3) Support vector
支持向量
1.
Modeling method of least squares support vector regression based on vector base learning;
基于矢量基学习的最小二乘支持向量机建模
2.
Lower dimension Newton-algorithm for training the support vector machines;
训练支持向量机的低维Newton算法
3.
A fast algorithm for extracting the support vector on the Mahalanobis distance;
一种基于马氏距离的支持向量快速提取算法
4) support vectors
支持向量
1.
Since the boundary is determined by a small portion of data called support vectors which distribute around the description boundary;the proposed algorithm treats the distance to the center as a probability measure of support vectors for each sample,and selects the former ones ranking as the reduced sets to participate in the SVDD training.
为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD。
2.
This paper proposes a new method of evaluating text features that can detect noise features based on support vectors.
提出了一种基于支持向量且能识别噪音特征的文本特征评估方法,以及一种具有自我反馈学习能力的文本分类系统。
5) Support vector machine(SVM)
支持向量
1.
A support vector machine(SVM) object extraction method was proposed based on the HSV color model,which could be used for testing the blend ratio of cashmere/wool yarns.
文章介绍了基于HSV颜色模型,应用支持向量机的目标提取方法检测羊绒/羊毛混纺比。
6) support vector machine
支持向量
1.
The Research and Application of Reinforcement Learning Based on Support Vector Machine(SVM);
基于支持向量技术的Agent强化学习研究与应用
2.
Research on Machine Fault Pattern Classification Based on Support Vector Machine
基于支持向量机的机械故障多类分类研究
3.
The advantages and disadvantages of grey forecasting methods and support vector machines(SVM) were analyzed respectively.
在分析了灰色预测方法和支持向量机各自的优缺点基础上,提出了将二者相结合的一种新的预测模型———灰色支持向量机裂纹扩展预测模型。
补充资料:支持向量机方法
支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解,是神经网络领域域取得的一项重大突破。与神经网络相比,它的优点是训练算法中不存在局部极小值问题,可以自动设计模型复杂度(例如隐层节点数),不存在维数灾难问题,泛化能力强。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条