1) temporal error concealment
时域误码掩盖
1.
264 temporal error concealment algorithm is easy to lose neighboring motion vectors of blocks.
264时域误码掩盖算法中丢失块的相邻运动矢量在无线环境下极易丢失的问题,结合部分误码掩盖算法研究成果,提出了一种利用相邻参考帧和丢失块相邻运动矢量,运用投影加权的方法估计出最优丢失块运动矢量用于误码补偿的改进误码掩盖算法。
3) temporal/spatial error concealment
时/空误码掩盖
4) error concealment
误码掩盖
1.
Efficient temporal error concealment algorithm for H.264;
高效的H.264时域误码掩盖算法
2.
Content adaptive spatial error concealment algorithm based on the H.264 standard;
基于H.264的内容自适应空域误码掩盖算法
3.
Overview of the H.264/AVC error concealment;
H.264视频误码掩盖综述
5) temporal concealment
时域掩盖
1.
the decision between the spatial and temporal concealment is m.
该方法针对每一个丢失宏块,根据其相邻区域的运动特征自适应地选择时域掩盖算法和空域掩盖算法,从而弥补了单纯使用一类错误掩盖法的缺点。
2.
However,spatial conceal-ment will cause the blur of image quality and temporal concealment will make o.
263编码视频流在因特网上传输时,易受错误的影响,错误不但会影响当前帧还会连续扩散到以后的解码帧,从而导致图像质量的严重恶化,目前消除错误影响的常用算法是空域掩盖和时域掩盖算法,但是单纯地使用空域算法会造成图像的钝化,而时域算法则无法处理大运动的图像区域,因此,建议了一种时域和空域混合掩盖算法,同时使用两类算法对发生错误的图像帧进行掩盖。
补充资料:时域测量与频域测量
测量被测对象在不同时间的特性,即把它看成是一个时间的函数f(t)来测量,称为时域测量。例如,对图中a的信号 f(t)可以用示波器显示并测量它的幅度、宽度、上升和下降时间等参数。把信号f(t)输入一个网络,测量出其输出信号f(t),与输入相比较而求得网络的传递函数h(t)。这些都属于时域测量。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条