1) AS-level topology
AS级拓扑
1.
Network topology inference is one of the basic functions of a network management system, and the AS-level topology inference is its focus and difficult point.
网络拓扑推理是网络管理系统的基本功能之一,AS级拓扑推理是其重点和难点。
2) As-level topology graph
As级拓扑图
1.
This paper proposes a Complete-Waxman-Tree(CWT) hiberarchy algorithm that can generate Internet As-level topology graph with three levels,which are consistent with the Internet very well in the distribution of the node s degree,the tree s size and the tree .
Internet As级拓扑图在自治系统层次上刻画Internet特征,它在当前很多领域有着广泛的应用。
2.
This paper proposes a Core-Tree algorithm that can generate Internet As-level topology graph with two level of the core mesh and the tree-like topology,the distribution of the node s degree,the tree s size and the tree s depth are consistent with the Interne.
InternetAs级拓扑图在自治系统的层次上刻画Internet特征,它在当前很多领域有着广泛的应用。
3) series connected topology
级联拓扑
4) router-level topology
路由级拓扑
1.
The measuring data which were got by CAIDA multi monitors were analyzed,then multi eigenvalues describing the router-level topology of Internet were extracted from analysis results.
通过对CAIDA多监测点获得的测量数据的分析,提取出表征Internet路由级拓扑规律的多项特征值。
5) topological proximity
拓扑优先级
1.
With ECGP, peers are grouped into hierarchical clusters according to their topological proximity, and global-peers are selected from regular peers to act as cluster leaders and service providers, achieving the query locality and information interaction between client peers and global peers inside the clusters.
该模型根据拓扑优先级把对等点聚类成簇形层级结构,从CN中选出GN充当簇的中心和服务提供者,实现定位查询和信息交互。
6) cascade topology
级联型拓扑
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条