1) temporal circular convolution method(TCM)
基于时域循环卷积的PAPR降低算法(TCM)
2) ring CC
基于环的卷积码
4) time domain convolution
时域卷积法
5) cyclic convolution
循环卷积
1.
The relation between the two-dimensional cyclic convolution and the discrete reconstruction convolution is educed.
分析了实空间离散格林函数的特点和平面声全息重构卷积计算的特殊性 ,推导了在重构条件下二维循环卷积与重构卷积的关系。
2.
This paper proposes a new algorithm for the computation of Discrete Cosine Transform (DCT) with odd prime length using cyclic or skew cyclic convolutions.
提出了一种利用循环卷积 (Cyclicconvolution)和扭循环卷积 (Skewcyclicconvolution)实现的计算奇素长度离散余弦变换 (DCT)快速新算法 。
3.
Convolution is converted to cyclic convolution,and also FFT is employed to calculate cyclic convolution.
将Toeplitz矩阵分解为一个循环矩阵和一个下三角Toeplitz矩阵之和,以及一般卷积向循环卷积的转化,借助快速Fouier变换(FFT),导出了一种计算两个n阶Toeplitz矩阵乘积的新快速算法,其算法复杂性为2n~2+(63/4)nlog_2 n-15n-34次实乘运算,4n~2+(63/2)nlog_2 n-18n+23次实加运算,与已有的优化算法相比,在实乘次数有所降低的同时,实加次数降低了近1/3,是目前复杂性最小的一种算法。
6) circular convolution
循环卷积
1.
GPS signal C/A code phase measurement using FFT and circular convolution;
FFT与循环卷积相结合的GPS信号C/A码相位测量算法
2.
Research of Circular Convolution in OFDM System with Fixed Waveform TGI;
固定波形时间保护间隔0FDM系统循环卷积特性研究
3.
The algorithm firstly determines the mensurability of the signals and the lowest sampling rate for correctly detecting the signals,and calculates the PN code phase at this sampling rate,then gradually increases the sampling rate and calculates the PN code phases at those sampling rates using circular convolution,until the expectant precision is acquired.
算法首先利用FFT确定信号的可测性及可有效检测到目标信号的最低采样频率,并计算最低采样频率下信号的PN码相位,然后逐级提高采样频率,用循环卷积法求取各级采样频率下的PN码相位,直至达到测量精度要求。
补充资料:时域测量与频域测量
测量被测对象在不同时间的特性,即把它看成是一个时间的函数f(t)来测量,称为时域测量。例如,对图中a的信号 f(t)可以用示波器显示并测量它的幅度、宽度、上升和下降时间等参数。把信号f(t)输入一个网络,测量出其输出信号f(t),与输入相比较而求得网络的传递函数h(t)。这些都属于时域测量。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
对同一个被测对象,也可以测量它在不同频率时的特性,亦即把它看成是一个频率的函数S(ω)来测量,这称为频域测量。例如,对信号f(t)可以用频谱分析仪显示并测量它在不同频率的功率分布谱S(ω),如图b。把这个信号输入一个网络,测量出其输出频谱S′(ω),与输入相比较而求得网络的频率响应G(ω)。这些都属于频域测量。用一个频率可变的正弦(单频)信号作输入,测量出在不同频率时网络输出与输入功率之比,也得到G(ω)。这仍然是频域测量。
时域与频域过程或响应,在数学上彼此是一对相互的傅里叶变换关系
这里*表示卷积。时域测量与频域测量互相之间有唯一的对应关系。在这一个域进行测量,通过换算可求得另一个域的结果。在实际测量中,两种方法各有其适用范围和相应的测量仪器。示波器是时域测量常用的仪器,便于测量信号波形参数、相?还叵岛褪奔涔叵档取?频谱分析仪是频域测量常用的仪器,便于测量频谱、谐波、失真、交调等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条