1) auxiliary singular discrete system
辅助广义离散系统
1.
First, an auxiliary singular discrete system is constructed and its state feedback H_∞ controller is designed, and then by means of two groups of matrix inequalities, a sufficient condition for the existence of the dynamic output feedback H_∞ controller is presented, such that the resulting closed-loop system is admissible with its transfer function satisfying H_∞ norm constraint.
首先,构造辅助广义离散系统,给出该系统的状态反馈H∞控制器设计方法,在此基础上,用两组矩阵不等式给出使一般广义离散系统是允许的且满足H∞范数限制的控制器存在的充分条件,并给出了控制器的解析表达式。
2) auxiliary singular systems
辅助广义系统
3) discrete-time descriptor systems
离散广义系统
1.
Strictly dissipative analysis and control for discrete-time descriptor systems;
离散广义系统的严格耗散分析与控制
2.
A singular linear quadratic problem for discrete-time descriptor systems is studied.
研究了离散广义系统的奇异线性二次指标最优控制问题。
4) discrete singular systems
离散广义系统
1.
H_∞ guaranteed cost control for uncertain discrete singular systems;
不确定离散广义系统的H_∞保成本控制
2.
Internal matrix harmonic oscillation to discrete singular systems
离散广义系统的区间矩阵平稳振荡
3.
In this paper,a generalized Lyapunov equation for discrete singular systems is applied to study the relationship between stability and controllability,stability and observability and some related criteria are obtained.
本文研究了离散广义系统的稳定性问题,以及离散广义系统的能控(能观)性、稳定性和Lyapunov方程有对称解三者之间的关系,并得到了有关的判据。
6) discrete-time singular system
离散广义系统
1.
Robust H_∞ control of discrete-time singular systems with exogenous disturbance and time-delay;
带有外干扰的滞后离散广义系统鲁棒H_∞控制器设计:LMI方法
2.
Using the quadratic stability,the design of robust controller for discrete-time singular systems with exogenous disturbance is discussed in the paper.
利用二次稳定的概念 ,研究了带有外部干扰的离散广义系统鲁棒控制器的设计问题 。
3.
By the discussion of the deadbeat control problem and the robust control problem with pertur bation in discrete-time singular systems, the input u =kEx (t) which is different from others was proposed to design observer when En (t) or x (t) was not directly obtained.
通过讨论离散广义系统中的无振控制以及带有外加扰动的鲁棒控制问题,提出了在Ex(t)或x(t)不能直接得到时,设计观测器,采用了与众不同的输入u=kEx(t),同时研究了在此输入情况下系统的正则性,无振控制及分离性。
补充资料:离散时间周期序列的离散傅里叶级数表示
(1)
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
式中χ((n))N为一离散时间周期序列,其周期为N点,即
式中r为任意整数。X((k))N为频域周期序列,其周期亦为N点,即X(k)=X(k+lN),式中l为任意整数。
从式(1)可导出已知X((k))N求χ((n))N的关系
(2)
式(1)和式(2)称为离散傅里叶级数对。
当离散时间周期序列整体向左移位m时,移位后的序列为χ((n+m))N,如果χ((n))N的离散傅里叶级数(DFS)表示为,则χ((n+m))N的DFS表示为
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条