1) non-parabolicity
非抛物线
1.
The band structure data being used in the simulations are based on the non-parabolicity method.
实验采用的是非抛物线模型计算电子的能带结构,模拟包含了声学声子散射,极性光学声子散射,压电散射,电离杂质散射,能谷间散射以及自散射等散射机理。
2.
The non-parabolicity multi-valley model is used to describe the conduction band structure of ZnS,in which two energy sub-bands are included.
模拟结果与全带Monte Carlo模拟得到的结果吻合得较好,但非抛物线多能谷模型比全带模型计算更简单。
2) nonparabolicity
非抛物线性
1.
48As quantum well dependence on the conduction band nonparabolicity is studied within the framework of the 8×8 k·p model.
研究了导带非抛物线性对应变In0。
3) Nonparabolic rate law
非抛物线定律
4) nonlinear parabolic equation
非线性抛物方程
1.
Quenching for a nonlinear parabolic equation with nonlinear singular boundary condition;
一类带非线性奇异边界条件的非线性抛物方程的淬灭问题
2.
Existence of solutions of nonlinear parabolic equation with singular initial data in weighted spaces;
奇异初值条件下非线性抛物方程在权空间中解的存在性
3.
Large time behavior of nonlinear parabolic equation;
一类非线性抛物方程解的大时间性态
5) nonlinear parabolic equations
非线性抛物方程
1.
This paper is concerned with the decay properties for solutions of the nonlinear parabolic equations in twodimensional whole spaces R2.
在全空间R2上讨论了一类非线性抛物方程解的渐近性态。
2.
In this paper a class of nonlinear parabolic equations boundary value problem is concerned,and sufficient conditions for the oscillation of solutions of the equation under the consideration with three kinds of boundasy conditions are given.
研究了一类带有偏差幅度的时滞非线性抛物方程,并给出了方程在三种边值条件下解的振荡准则。
3.
The development and the authors’ works on the existence、uniqueness and properties of solutions of the nonlinear parabolic equations with singularities are introduced.
介绍了具奇性的非线性抛物方程解的存在性、唯一性和性质以及作者在这一领域的工
6) doubly nonlinear parabolic system
双非线性抛物组
1.
Boundedness for solution of a doubly nonlinear parabolic system;
一类双非线性抛物组解的有界性
2.
Although the boundedness results for solutions of single doubly nonlinear parabolic equations can be extended to that of doubly nonlinear parabolic systems in diagonal form, the integrability restrictions on the stuctural coefficients and on the unknown solutions are needed to be stiengthened.
单个双非线性抛物方程解的有界性结果推广到对角型双非线性抛物组情形时,无论对结构系数的可积性要求或对未知解的可积性要求。
3.
The a priori estimate is established to the maximum modulus of solutionsof doubly nonlinear parabolic systems.
对一类双非线性抛物组的有界解,作出最大模的先验估计。
补充资料:非想非非想处天
1.佛教语。即三界中无色界第四天。此天没有欲望与物质﹐仅有微妙的思想。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条