1) multi-output generalized partially Bent functions
多输出广义部分Bent函数
2) multioutput generalized bent functions
多输出广义Bent函数
1.
Also, we study properties of multioutput generalized bent functions.
本文利用概率论、代数以及频谱理论的相关知识,对密码学中的多输出m值逻辑函数的相关系数,以及剩余类环上的多输出广义Bent函数的性质和构造进行了研究,主要包括以下两方面的内容。
3) multi-output partially-bent functions
多输出部分Bent函数
1.
Several methods of constructing multi-output partially-bent functions;
多输出部分Bent函数的几种构造方法
4) generalized partially Bent function
广义部分Bent函数
1.
This paper gives some construction methods of generalized partially Bent functionsby some equivalent conditions of generalized partially Bent functions.
利用广义部分Bent函数的等价条件给出了广义部分Bent函数的一些构造方
5) multi-output bent function
多输出Bent函数
1.
In the method,a higher order multi-output semi-bent function is constructed by concatenating two lower order multi-output bent functions.
该方法通过级联两个低阶多输出Bent函数得到高阶多输出半Bent函数。
2.
Based on the new concept, a method of construct ing multi-output Bent functions is presented.
推广了半Bent函数的概念,提出了多输出半Bent函数的概念,并由此给出了多输出Bent函数的一种构造方法。
3.
In this paper, a new method to construct odd dimensional functions with comparably good crypt properties using multi-output Bent function is put forward.
本文提出一种利用多输出Bent函数构造密码学性质较好的奇数维函数的方法,这里构造出的函数有比较均匀的差分分布和Walsh谱值分布,用作分组密码体制中的非线性逻辑时,能有效地抵抗差分分析和线性分析的攻击。
6) multi-output semi-bent function
多输出半Bent函数
1.
A method to construct multi-output semi-bent functions is presented.
给出了多输出半Bent函数的一种构造方法。
2.
In the method, a multi-output Bent function is constructed by concatenating two multi-output semi-Bent functions.
推广了半Bent函数的概念,提出了多输出半Bent函数的概念,并由此给出了多输出Bent函数的一种构造方法。
补充资料:广义殆周期函数
广义殆周期函数
generalized almost - periodic functions
广义殆周期函数「gen日,“别月aln扣成一碑该浦c五11州匆留;0606川e。。‘e no,,ne,IO皿”,eC蕊”e中yl压啊] 殆周期函数的各种推广所成的函数类.其中的每一类都推广了Bd叮殆周期函数(Bohra】n】ost一详石记沁几川c山ns)和压对四犷殆周期函数(E幻chnera】111斑t~p叮.iedic hlllctio留)的某些方面.下述数学概念(结构)出现在助hr与R刃加er殆周期性的定义中:l)定义在整个直线上的连续函数空间,可视为以 p伍g}一量缪}f(x)一g(x)l(*)为距离(曲臼叮ce)的度量空间;2)直线R,到复平面C,中的映射(函数);3)直线R,作为一个群;4)直线Rl作为一个拓扑空间. 殆周期函数的现有推广能依据这些结构方便地予以分类. l)如果代替连续性,要求函数f(x)(x 6RI)在每个有界区间上是p幂可积的可测函数,则如下三种表示式可取作距离: C代11阳oB距离( StePanov曲栩叮ce) 一伍。,一::时‘}f(x卜。(x)}咐’气 M阳贝距离(俄叨曲扭nce) ,附·{f,g}二,噢几。抓g}; 跳icovi匕h军亭(腼covitehdis~)、 Pa,抓。卜{、责I}f(x)与。尸dx}伙 相应于这些距离,可以有广义oen.毗.殆周期函数(StePanova】nl招t一讲垃劝记丘m ctio斑),广义W娜殆周期函数(W己yla」m璐t一详行浏c ftmctions)和广义肠翻政雨权为殆周期函数(B留ico访teh aln篮招t一详石阅记丘mc-tio璐). 2)假设直线R,不是映到c’,而是映到一个加现ch空间B.这样的映射称为抽象函数(咖。习以丘mctjon).假设抽象函数是连续的,并且它们之间的距离由式(,)定义,但其中的模用范数代替,则BOhr与且犯加℃r的定义可被推广并且导致所谓抽象殆周期函数(a忱你双t目n幻 st一沐次劝c ftm etio璐). 进一步的推广是以拓扑向量空间代替助朋ch空间获得的.在此情形下,对零元的每个邻域U,实数:=丁。称为f的U殆周期(U一习m璐t一详nod),如果对一切x任R,有f(x+:)一f(x)任U. 若用弱拓扑代替范数拓扑,则可得到所谓弱殆周期函数(城汕a】11】阴t一详对浏记丘mctions):函数f(x)(x‘R’,f任B)称为弱殆周期的,如果对任意泛函职任B’,函数毋仃(x))是数值殆周期函数. 3)假设用一个抽象群〔不必是拓扑群)G代替直线Rl,并考虑G到一拓扑向量空间(特别地,到C,)中的映射f(x),xeG.采用,又加盯的定义作为殆周期函数的定义是方便的:f称为群G上的殆周期函数(创的1万t一详滋汕cft川c加n on the 9.叩),如果函数族f。h)(h〔G)(或等价地,函数族f(hx))关于G上的一致收敛性是条件紧的(见群上的殆周期函数(a玩嗡t-详d记元几汉石。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条