1) isoluminant grating
等亮度条纹
3) fringe intensity
条纹强度;干涉带亮度
4) luminance texture
亮度纹理
5) central bright fringe
中央亮条纹
1.
According to the Rayleigh-Sommerfeld diffraction scalar integral formula,the equation of spatial frequency at half maximum intensity of central bright fringe of far field diffraction of planar waveguide in TE_0 mode was educed.
由瑞利 索末菲标量衍射积分公式出发,推导出中央亮条纹强度半最大值处的空间频率满足的方程;阐明了平面波导TE0模远射远场的中央亮条纹强度半最大值空间频率宽度随波导归一化频率增大而增大;给出中央亮条纹强度半最大值全角宽度与工作波长、波导宽度和波导相对折射率关系曲线。
2.
The concept of central bright fringe of dielectric planar wavegu.
首次提出介质平面波导衍射场存在中央亮条纹的概念 ,中央亮条纹的功率大于波导总功率的 99。
6) highlight Bar
高亮度条
补充资料:等厚干涉条纹
定域在薄膜附近,与膜的等厚度线一致的干涉条纹。为简单起见,先讨论一下由折射率均匀而夹角又很小的楔形平面板(可以是玻璃板,也可以是空气层)所生的干涉。如图1所示,由光源S发出的单色光,经平面板上、下两表面反射后在干涉场中某点 P所生的干涉效应取决于两相干的光的光程差:,
式中n和n┡分别为楔形平板和周围媒质的折射率。实际上,因为板的厚度一般都很薄,因此上式可近似用式,
式中d为楔形平板在B点的厚度,i2为入射光在A点的折射角。考虑到光在上、下两表面反射时产生的位相跃变,则又可写作,
式中λ为光的波长。由此式可以看出,当光源距楔形板较远或观察干涉条纹时的仪器(眼睛或低倍显微镜)的孔径很小,以致在整个视场内的光的入射角i1可视为常量时,则楔形板上、下两表面引起的两反射光在相遇点的位相差就只决定于产生该反射光处薄板的厚度d。显然,板上厚度相同的地方对反射光引起的光程差相同。因此同一干涉条纹是由板上厚度相同的地方引起的反射光形成的。这种干涉条纹称作等厚干涉条纹。在上述楔形平板的情况下,干涉条纹为平行楔棱的等距直条纹。
等厚干涉条纹的定域如图2所示。图2a中干涉条纹定域在楔形板上方的P处;图2b中干涉条纹则定域在楔形板下方的 P处。实际上由于楔形板很薄,只要光在板面上的入射角不大,则可认为干涉条纹定域在板表面上。因此,为观察或拍摄等厚干涉条纹,须将眼睛或照相机调焦到板表面上。
等厚干涉条纹在光学检验上有重要作用。如测楔形平板的微小角度,测定光学表面的曲率,检查光学表面的平整度,测量长度的微小变化等等。
式中n和n┡分别为楔形平板和周围媒质的折射率。实际上,因为板的厚度一般都很薄,因此上式可近似用式,
式中d为楔形平板在B点的厚度,i2为入射光在A点的折射角。考虑到光在上、下两表面反射时产生的位相跃变,则又可写作,
式中λ为光的波长。由此式可以看出,当光源距楔形板较远或观察干涉条纹时的仪器(眼睛或低倍显微镜)的孔径很小,以致在整个视场内的光的入射角i1可视为常量时,则楔形板上、下两表面引起的两反射光在相遇点的位相差就只决定于产生该反射光处薄板的厚度d。显然,板上厚度相同的地方对反射光引起的光程差相同。因此同一干涉条纹是由板上厚度相同的地方引起的反射光形成的。这种干涉条纹称作等厚干涉条纹。在上述楔形平板的情况下,干涉条纹为平行楔棱的等距直条纹。
等厚干涉条纹的定域如图2所示。图2a中干涉条纹定域在楔形板上方的P处;图2b中干涉条纹则定域在楔形板下方的 P处。实际上由于楔形板很薄,只要光在板面上的入射角不大,则可认为干涉条纹定域在板表面上。因此,为观察或拍摄等厚干涉条纹,须将眼睛或照相机调焦到板表面上。
等厚干涉条纹在光学检验上有重要作用。如测楔形平板的微小角度,测定光学表面的曲率,检查光学表面的平整度,测量长度的微小变化等等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条