1) Excited squeezed vacuum state
激发压缩真空态
1.
A quantization scheme for an LC circuit a source was proposed and the fluctuations of the charge and the magnetic flux of the circuit in excited squeezed vacuum state are studied by using the complete quantum theory.
通过量子化LC电路,运用全量子理论研究了在激发压缩真空态下介观LC电路中电荷、磁通量的量子涨落。
2) excited state of the squeezed vacuum state
压缩真空态的激发态
3) two-mode excited squeezed vacuum state
双模激发压缩真空态
1.
Using the Wigner operator in the entangled-state representation we construct the Wigner functions of the two-mode excited squeezed vacuum states(TESVS).
利用纠缠态表象下的维格纳(Wigner)算符,构造了双模激发压缩真空态的维格纳函数,并根据该函数在相空间ρ-γ中随参量m,n和r的变化关系,讨论了双模激发压缩真空态的量子干涉特性和压缩效应。
4) Excited two mode squeezed vacuum state
激发双模压缩真空态
5) Superposition of the excited two mode squeezed vacuum states
叠加激发双模压缩真空态
6) squeezed vacuum state
压缩真空态
1.
Squeezing effects of the photon-added squeezed vacuum states;
增光子压缩真空态的压缩特性
2.
The higher-order squeezing properties for the states generated by excitations on a squeezed vacuum state are studied.
发现θ等于零时这种态中正交分量的2N 阶矩表达式可以化为压缩真空态的2N 阶矩和一个与 m有关的函数相乘的形式。
3.
Based upon the quantization of a mesoscopic lossless transmission line, analysis is made for the quantum fluctuations of the current and current gradient of the line in the vacuum state and squeezed vacuum state, especialy for the difference between the quantum fluctuations of the transmission line and LC circuit.
在将介观无损耗传输线量子化的基础上 ,研究了真空态和压缩真空态下传输线中电流和电流梯度的量子涨落 。
补充资料:超激发态
原子或分子的激发能高于电离电位而没有导致电离的一种瞬时存在的激发态,在原子或分子的右上角加≠表示。超激发态是一个不稳定状态,处于超激发态的分子具有大大超过分子中化学键离解能的能量,极易解离成分子碎片,这些分子碎片中必有一个处在激发态:AB≠─→A*+B。超激发态也可能通过预电离分子来衰减能量:AB≠─→AB++e。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条