1) local minimum spanning tree
局部最小生成树
1.
Then cluster heads run the local minimum spanning tree algorithm(MST) to construct a suitable topology.
利用分簇思想将网络划分为可重叠的簇,簇内各节点按照局部最小生成树算法思想确定邻居关系,调整发送功率,生成合适的网络拓扑。
2) partial minimum spanning tree
局部最小树
1.
The proposed model is considered as a typical partial minimum spanning tree problem from the mathematical point of view.
以寻找最短的加权送电路径为优化目标,将网络重构建模为一个寻找图的局部最小树问题,并计及各种约束。
3) minimum spanning tree
最小生成树
1.
Research on bi-criteria minimum spanning tree problem based on ant colony system;
基于蚁群系统的双目标最小生成树算法
2.
The solution-based DPCNN to the minimum spanning tree of undirected weighted graph;
基于DPCNN的无向赋权图的最小生成树的求解
3.
Degree-constrained minimum spanning tree algorithm based on immune-ant colony algorithm;
基于免疫—蚁群算法的度约束最小生成树算法
4) minimal spanning tree
最小生成树
1.
A color image segmentation method based on Minimal Spanning Tree and local thresholds;
基于最小生成树和局部阈值的彩色图像分割方法
2.
Application of Minimal Spanning Tree in Supplies of Central Heating;
最小生成树问题在暖气供应建设中的应用
3.
Prim algorithm of minimal spanning tree and minimum function;
最小生成树的prim算法及minimum函数
5) minimum cost spanning tree
最小生成树
1.
On Algorithm of Producing Minimum Cost Spanning Tree by Method of Seeking Cycles to Romove Its Edge;
利用找环去边法求最小生成树的算法探析
2.
The Application of Minimum Cost Spanning Tree to Solve the Question of Urban Highway
最小生成树在城市高速公路问题中的应用
3.
The sparse feature difference degree and the minimum cost spanning tree are used to resolve the problem of high attribute dimensional data clustering which exists in information classifying,in order to support the central idea,an example is given in the paper.
针对文本信息聚类中的高属性维稀疏数据聚类问题,采用计算对象间稀疏特征差异度来度量文本对象之间的相关度,结合最小生成树的方法来进行聚类分析,提出一种基于稀疏特征差异度的聚类方法。
6) MST
最小生成树
1.
MST problems solved by DNA-genetic algorithm;
基于DNA计算的遗传算法解决最小生成树问题
2.
MST Clustering Algorithm Based on Grid;
基于网格的最小生成树聚类算法
3.
A branch and bound algorithm for the CMST problem;
流量约束最小生成树问题的分枝定界算法
补充资料:最小生成树
最小生成树是由给定的无向图的边的子集组成的树。它有两个性质:
- 它包含图中的每个顶点。
- 它的所有边上的权的总和尽可能小。
用式子来表示:
- <math>w(T) = \sum_{(u,v)\in T} w(u,v)</math>
这里w(T)表示最小的总权值,(u,v) 表示定点u和v之间的边。
最小生成树的生成有两种方法,普里姆(Prim)算法,和克鲁斯卡尔(Kruskal)算法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条