说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Agent普适机器学习
1)  agent pervasive machine learning
Agent普适机器学习
1.
Research on classifier of agent pervasive machine learning;
Agent普适机器学习分类器
2)  pervasive learning
普适学习
3)  Ubiquitous Agent
普适Agent
4)  Agent learning
Agent学习
5)  multi-agent learning
多agent学习
1.
Rationality and convergence are two topics in the research on multi-agent learning.
理性和收敛是多agent学习研究所追求的目标,在理性合作的多agent系统中提出利用Pareto占优解代替非合作的Nash平衡解进行学习,使agent更具理性,另一方面引入社会公约来启动和约束agent的推理,统一系统中所有agent的决策,从而保证学习的收敛性。
6)  learning agent
学习Agent
1.
Each Agent has been assigned different function in the MAS,and learning agent can learn well by user s interest, and filter agent can filtrate useless information for users.
本文介绍了一种基于MAS(Multi-Agent System)的自适应智能搜索引擎系统,MAS为每个Agent指派了不同的功能,其中学习Agent能够很好地对用户的兴趣进行自适应学习,过滤Agent对反馈给用户的信息进行了过滤,既保证了查全率,又提高了检索结果的查准率。
2.
The Multi Agent system is mainly divided into three parts:interface Agent,search Agent and learning Agent.
这个多Agent系统主要由界面Agent、搜索Agent和学习Agent三个子Agent组成。
补充资料:机器学习


机器学习
machine learning

  ·328·习L一~~.~..~~~~侧~~~~机现学习等等。这一时期有影响的工作有学习质谱仪预测规则系统Meta~DENDRAL,利用AQll方法学习大豆疾病诊断规则系统,利用ID3方法学习象棋残局规则,数学概念发现系统AM,符号积分系统LEX,以及一系列物理定理重新发现系统BACON。在学习计算理论上,L.G.Valiant提出了概率近似正确PAC学习模型,这一成果推动了学习计算理论的发展。 第四阶段始于80年代中后期,主要源于神经网络的重新兴起。由于使用隐单元的多层神经网络及反传算法的提出,克服了早期线性感知机的局限性,从而使得非符号的神经网络的研究得以与符号学习并行发展。同时,机器学习在符号学习的各个方面也更加深人和广泛地展开,并形成了较为稳定的几种学习风范,如归纳学习,分析学习(特别是解释学习和类比学习),遗传学习等。这一时期有影响的工作有多层神经网络反向传播学习算法,基于解释的学习,一系列决策树归纳学习方法,J.H.Hollalld的遗传学习和分类器系统,A.Newell等的岌〕AR学习系统,以及PRODIGY学习系统等。近期,由于复杂世界的实际应用的需要,出现了结合各种学习方法的集成学习系统、多策略学习技术,特别是关于连接学习与符号学习的结合。另外,有着很大应用价值的数据库知识发现学习技术也发展得很快。 机器学习经过三十多年的发展,到现在已形成 了很多学习方法,例如机械学习、传授学习、实例学 习、发现学习、解释学习、类比学习、事例学习、遗传学习、连接学习等。这些学习方法可以用一个学习模型来描述(参见图1)。环境)一叫学习单元卜叫知识库卜叫执行单元图1一个简单学习系统模型 在图1中,圆圈表示信息体(如观察的数据,以及事实、规则等知识),方框表示过程。箭头指示数据在学习系统中的流向。环境为学习单元提供外界信息源(如经验实例)。学习单元利用该信息对知识库作出改进(增加新知识或重新组织已有知识)。执行单元利用知识库中的知识执行任务,任务执行后的信息又反馈给学习单元作为进一步学习的输人。 学习单元的输人有两种:一是外界环境,另一是执行任务后的反馈信息。不同的学习系统有不同的经验实例表示。最简单的一种是二元特征表示,仅仅描述对象某些属性的存在与否,例如病人有或没有某个特定症状。下文要讲的连接学习和遗传学习方法一般使用这种二元特征的输人。另一种是用属性值表示,每个属性有一组相互排斥的值,如颜色属性的值可为红色、蓝色和黄色等。二元特征可看作是此类的特例。这种属性值表示典型地用在归纳学习方法中。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条